BACKGROUND:Rapid on-site triage is critical after mass-casualty incidents(MCIs)and other mass injury events.Unmanned aerial vehicles(UAVs)have been used in MCIs to search and rescue wounded individuals,but they mainly...BACKGROUND:Rapid on-site triage is critical after mass-casualty incidents(MCIs)and other mass injury events.Unmanned aerial vehicles(UAVs)have been used in MCIs to search and rescue wounded individuals,but they mainly depend on the UAV operator’s experience.We used UAVs and artificial intelligence(AI)to provide a new technique for the triage of MCIs and more efficient solutions for emergency rescue.METHODS:This was a preliminary experimental study.We developed an intelligent triage system based on two AI algorithms,namely OpenPose and YOLO.Volunteers were recruited to simulate the MCI scene and triage,combined with UAV and Fifth Generation(5G)Mobile Communication Technology real-time transmission technique,to achieve triage in the simulated MCI scene.RESULTS:Seven postures were designed and recognized to achieve brief but meaningful triage in MCIs.Eight volunteers participated in the MCI simulation scenario.The results of simulation scenarios showed that the proposed method was feasible in tasks of triage for MCIs.CONCLUSION:The proposed technique may provide an alternative technique for the triage of MCIs and is an innovative method in emergency rescue.展开更多
Root rot disease caused by Fusarium solani is the most devastating disease of the tomato and legume crops in China.The metabolites of Bacillus species can inhibit many fungal diseases.In this study,the metabolites of ...Root rot disease caused by Fusarium solani is the most devastating disease of the tomato and legume crops in China.The metabolites of Bacillus species can inhibit many fungal diseases.In this study,the metabolites of deep-sea-derived bacterium Bacillus subtilis 2 H11 can significantly inhibit the growth of F.solani.The metabolite C_(17)-fengycin B,one of the cyclic lipopeptides,was identified by the combination of silica column chromatography,high-performance liquid chromatography(HPLC),high-energy collision induced dissociation mass spectrometry(HCD-MS)and tandem mass spectrometry(HCD-MS/MS).The results of scanning electron microscopy(SEM)and transmission electron microscopy(TEM)showed that C_(17)-fengycin B could destroy the structure of the hyphae and spores of F.solani.The antifungal activities of C_(17)-fengycin B against F.solani were tested at concentrations ranging from 0.05 mg/mL to 0.20 mg/mL.The results indicated that C_(17)-fengycin B inhibited the growth of F.solani with antifungal index of 89.80%at 0.20 mg/mL,and the antifungal activity of C_(17)-fengycin B was further verified by the pot experiment.In addition,the cytotoxicity experiment showed that C_(17)-fengycin B had good biocompatibility and was a potential candidate for the development of biocontrol pesticide in the future.展开更多
基金Sanming Project of Medicine in Shenzhen(No.SZSM201911007)Shenzhen Stability Support Plan(20200824145152001)。
文摘BACKGROUND:Rapid on-site triage is critical after mass-casualty incidents(MCIs)and other mass injury events.Unmanned aerial vehicles(UAVs)have been used in MCIs to search and rescue wounded individuals,but they mainly depend on the UAV operator’s experience.We used UAVs and artificial intelligence(AI)to provide a new technique for the triage of MCIs and more efficient solutions for emergency rescue.METHODS:This was a preliminary experimental study.We developed an intelligent triage system based on two AI algorithms,namely OpenPose and YOLO.Volunteers were recruited to simulate the MCI scene and triage,combined with UAV and Fifth Generation(5G)Mobile Communication Technology real-time transmission technique,to achieve triage in the simulated MCI scene.RESULTS:Seven postures were designed and recognized to achieve brief but meaningful triage in MCIs.Eight volunteers participated in the MCI simulation scenario.The results of simulation scenarios showed that the proposed method was feasible in tasks of triage for MCIs.CONCLUSION:The proposed technique may provide an alternative technique for the triage of MCIs and is an innovative method in emergency rescue.
基金the National Key R&D Program of China(No.2018YFC0310800)the China Ocean Mineral Resources R&D Association Grant(No.DY135-B2-14)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA22050301)the Taishan Young Scholar Program of Shandong Province(No.tsqn20161051)the Qingdao Innovation Leadership Program(No.18-1-2-7-zhc)for Chaomin SUNthe China Postdoctoral Science Foundation(No.2019M652492)。
文摘Root rot disease caused by Fusarium solani is the most devastating disease of the tomato and legume crops in China.The metabolites of Bacillus species can inhibit many fungal diseases.In this study,the metabolites of deep-sea-derived bacterium Bacillus subtilis 2 H11 can significantly inhibit the growth of F.solani.The metabolite C_(17)-fengycin B,one of the cyclic lipopeptides,was identified by the combination of silica column chromatography,high-performance liquid chromatography(HPLC),high-energy collision induced dissociation mass spectrometry(HCD-MS)and tandem mass spectrometry(HCD-MS/MS).The results of scanning electron microscopy(SEM)and transmission electron microscopy(TEM)showed that C_(17)-fengycin B could destroy the structure of the hyphae and spores of F.solani.The antifungal activities of C_(17)-fengycin B against F.solani were tested at concentrations ranging from 0.05 mg/mL to 0.20 mg/mL.The results indicated that C_(17)-fengycin B inhibited the growth of F.solani with antifungal index of 89.80%at 0.20 mg/mL,and the antifungal activity of C_(17)-fengycin B was further verified by the pot experiment.In addition,the cytotoxicity experiment showed that C_(17)-fengycin B had good biocompatibility and was a potential candidate for the development of biocontrol pesticide in the future.