Design of a robust catalyst with high activity but the low cost for the hydrodeoxygenation(HDO) of biooils is of great importance to bring the biorefinery concept into reality.In this study,density functional theory(D...Design of a robust catalyst with high activity but the low cost for the hydrodeoxygenation(HDO) of biooils is of great importance to bring the biorefinery concept into reality.In this study,density functional theory(DFT) calculation was adopted to analyze the optimal location of Ni on MoO_(3-x) containing oxygen vacancy,and the corresponding result demonstrated that metallic Ni cluster located at the neighborhood of oxygen vacancies would significantly evoke HDO activity.Enlightened by DFT results,NiMoO_(4) was first hydrothermally synthesized and then employed to fabricate Ni-MoO_(3-x) catalyst via a low-temperature reduction,where Ni escaped from NiMoO_(4) and was reduced to its metallic state.Such an evolution of Ni species also induced the formation of oxygen vacancies around metallic Ni cluster.In the HDO of p-cresol,Ni-MoO_(3-x) exhibited high activity with a complete conversion and a methylcyclohexane selectivity of 99.4% at 150℃.Moreover,the catalyst showed good versatility in catalyzing HDO of diverse lignin-derived oxygenates and lignin oil.2D HSQC NMR,gas chromatograph and elemental analysis of the lignin oil demonstrated the high deoxygenation efficiency and saturation of the benzene ring over Ni-MoO_(3-x).In the upgrading of crude lignin oil,the deoxygenation degree was up to 99%,and the overall carbon yield of the naphthenes was as high as 69.4%.Importantly,the structures and carbon numbers of the naphthene products are similar to jet fuel-range cycloalka nes,which are expected to have a high density that can be blended into jet fuel to raise the range(or payload) of airplanes.This work demonstrates the feasibility for improving the targeted catalytic reactivity by rational tailoring the catalyst structure under the guidance of theoretical analysis,and provides an energy-efficient route for the upgrading of lignin crude oil into valuable naphthenes.展开更多
To enhance the hydrogen release during hydrogen storage,several Pt-Ir supported on Mg-Al mixed oxide catalysts were prepared and then applied into the dehydrogenation of methylcyclohexane(MCH)in this study.The effects...To enhance the hydrogen release during hydrogen storage,several Pt-Ir supported on Mg-Al mixed oxide catalysts were prepared and then applied into the dehydrogenation of methylcyclohexane(MCH)in this study.The effects of iridium content,reduction temperature on the activity and stability of the catalysts were studied in detail.In the presence of Ir,metal particle size was decrea sed and electron transfer between Ir and Pt was observed.High reduction temperature increased the metallic Ir content but enlarged the particle size of active site s.During the dehydrogenation reaction on Pt-Ir bimetallic catalyst,MCH was efficiently converted into toluene and PtIr-5/Mg-Al-275 exhibited the highe st activity.After prolonging the residence time and raising the reaction temperature to 350℃the conversion and hydrogen evolution rate were increased to 99.9%and 578.7 mmol·(g Pt)^-1·min^-1,respectively.Moreover,no carbon deposition was observed in the spent catalyst,presenting a high anti-coking ability and good potential for industrial application.展开更多
The great challenge in the aldol condensation of tailored fermentation products(acetone-butanol-ethanol,ABE)into energy intensive fuels is to develop a suitable catalyst with high activity and low-cost.In this study,C...The great challenge in the aldol condensation of tailored fermentation products(acetone-butanol-ethanol,ABE)into energy intensive fuels is to develop a suitable catalyst with high activity and low-cost.In this study,Co,Ni,and Co-Ni supported on Mg-Al oxide catalysts were prepared and their pore diameters were enlarged via adding active carbon as a hard template into Mg-Al hydrotalcite.During the aldol condensation reaction,the catalyst activity was enhanced after enlarging the pore diameter and Co-Ni bimetal supported catalyst presented the highest activity,which was resulted from that the electron transfer between Co and Ni in Co-Ni alloy enhanced the dehydrogenation activity and large pore lowered the mass transfer resistance.After optimizing the reaction conditions,acetone conversion and the total selectivity of C_(5)-C_(11)desired products in the aldol condensation of ABE reached up to 76%and 90%,respectively.The stability study showed that the activity was decreased with the increase of reaction number because of the oxidation of metallic Co and Ni,but this could be solved via a simple hydrogen reduction method.展开更多
Straw return can effectively improve farmland soil microenvironment and fertility.However,excessive straw in the topsoil adversely affects seed germination and crop growth.At present,the characteristics and key drivin...Straw return can effectively improve farmland soil microenvironment and fertility.However,excessive straw in the topsoil adversely affects seed germination and crop growth.At present,the characteristics and key driving factors of straw decomposition in dry farmlands are unclear.Based on the interactions between tillage practices including zero tillage(ZT),chisel tillage(CT),and plow tillage(PT)and nitrogen(N)fertilization,i.e.,low N(N1,180 kg ha^(-1)),normal N(N2,240 kg ha^(-1)),and high N(N3,300 kg ha^(-1)),quantitative polymerase chain reaction technology and an enzymatic detection kit were used to investigate the effects of key straw C-degrading enzyme activities and microbial abundance in soil on maize straw decomposition during the growth period of winter wheat in the winter wheat/summer maize double cropping system in a dry farmland of the Loess Plateau,China.Between 2018 and 2020,ZT and CT significantly increased winter wheat yield(by 10.94%and 12.79%,respectively)and straw decomposition velocity(by 20%and 26.67%,respectively),compared with PT.Compared to N1 and N3,N2 significantly increased wheat yield(by 4.65%and 5.31%,respectively)and straw decomposition velocity(by 26.33%and 13.21%,respectively).The partial least squares pathway modelling showed significant positive direct effects of soil moisture,NO3-,NH4+,total N,bacteria,and cellulase,laccase,and xylanase activities on straw decomposition,while soil pH,fungi,and Actinomycetes had significant negative direct effects.Overall,conservation tillage(ZT and CT)combined with N2 was beneficial for straw decomposition in the drylands of the Loess Plateau and improved straw resource utilization and basic soil fertility.The results of the study clarified the key drivers of straw decomposition in dry farmlands and provided new ideas for developing updated soil management practices and adaptive N application strategies to promote the resource utilization of straw and achieve the goals of carbon peaking and carbon neutrality.展开更多
Polysiloxane(PSO)was adopted as the matrix of the repair agents,and SiCeZrB_(2)powder was used as the filler,to repair the prefabricated defects on the SiCeZrB_(2)/SiC(SZS)coating of carbon/carbon(C/C)composites.The r...Polysiloxane(PSO)was adopted as the matrix of the repair agents,and SiCeZrB_(2)powder was used as the filler,to repair the prefabricated defects on the SiCeZrB_(2)/SiC(SZS)coating of carbon/carbon(C/C)composites.The repair agents were brushed on the defect areas and then underwent preoxidation(PR)or heat-treatment(HR)in a vacuum.The effects of different treatment processes on the chemical composition,microstructure of the repair agents,and the oxidation resistance behavior of the repaired coating were investigated.The repaired agents after both processes were pyrolyzed and generated SiOC ceramics,and they were well combined with the original coating.The thermal stability of PSO after preoxidation is poorer than that after heat-treatment,resulting in a weight loss rate of 5.88%after oxidation at 1500℃for 270 min,while that of the HR coating is only-0.87%,yet both have been great improvement compared with the unrepaired coating.This work provides an effective and simple approach to repairing damaged coatings for high-temperature applications.展开更多
Face detect application has a real time need in nature. Although Viola-Jones algorithm can handle it elegantly, today's bigger and bigger high quality images and videos still bring in the new challenge of real time n...Face detect application has a real time need in nature. Although Viola-Jones algorithm can handle it elegantly, today's bigger and bigger high quality images and videos still bring in the new challenge of real time needs. It is a good idea to parallel the Viola-Jones algorithm with OpenCL to achieve high performance across both AMD and NVidia GPU platforms without bringing up new algorithms. This paper presents the bottleneck of this application and discusses how to optimize the face detection step by step from a very naive implementation. Some brilliant tricks and methods like CPU execution time hidden, stubbles usage of local memory as high speed scratchpad and manual cache, and variable granularity were used to improve the performance. Those technologies result in 4-13 times speedup varying with the image size. Furthermore those ideas may throw on some light on the way to parallel applications efficiently with OpenCL. Taking face detection as an example, this paper also summarizes some universal advice on how to optimize OpenCL program, trying to help other applications do better on GPU.展开更多
基金supported by the National Key R&D Program of China (2022YFB3805401, 2019YFC1905300)the National Natural Science Foundation of China (22178297)+1 种基金the Hunan Provincial Natural Science Foundation (2022JJ40425, 2022JJ40432)the Process Intensification and Green Chemical Engineering Innovation Team of Hunan Province。
文摘Design of a robust catalyst with high activity but the low cost for the hydrodeoxygenation(HDO) of biooils is of great importance to bring the biorefinery concept into reality.In this study,density functional theory(DFT) calculation was adopted to analyze the optimal location of Ni on MoO_(3-x) containing oxygen vacancy,and the corresponding result demonstrated that metallic Ni cluster located at the neighborhood of oxygen vacancies would significantly evoke HDO activity.Enlightened by DFT results,NiMoO_(4) was first hydrothermally synthesized and then employed to fabricate Ni-MoO_(3-x) catalyst via a low-temperature reduction,where Ni escaped from NiMoO_(4) and was reduced to its metallic state.Such an evolution of Ni species also induced the formation of oxygen vacancies around metallic Ni cluster.In the HDO of p-cresol,Ni-MoO_(3-x) exhibited high activity with a complete conversion and a methylcyclohexane selectivity of 99.4% at 150℃.Moreover,the catalyst showed good versatility in catalyzing HDO of diverse lignin-derived oxygenates and lignin oil.2D HSQC NMR,gas chromatograph and elemental analysis of the lignin oil demonstrated the high deoxygenation efficiency and saturation of the benzene ring over Ni-MoO_(3-x).In the upgrading of crude lignin oil,the deoxygenation degree was up to 99%,and the overall carbon yield of the naphthenes was as high as 69.4%.Importantly,the structures and carbon numbers of the naphthene products are similar to jet fuel-range cycloalka nes,which are expected to have a high density that can be blended into jet fuel to raise the range(or payload) of airplanes.This work demonstrates the feasibility for improving the targeted catalytic reactivity by rational tailoring the catalyst structure under the guidance of theoretical analysis,and provides an energy-efficient route for the upgrading of lignin crude oil into valuable naphthenes.
基金supported by the National Natural Science Foundation of China(Nos.21676225 and 21776236)Natural Science Foundation of Hunan Province(2018JJ2384)+2 种基金Fund of Hunan Provincial Education Department(19A478)Collaborative Innovation Centre of New Chemical Technologies for Environmental Benignity and Efficient Resource UtilizationEngineering Research Centre of Chemical Process Simulation and Optimization of Ministry of Education。
文摘To enhance the hydrogen release during hydrogen storage,several Pt-Ir supported on Mg-Al mixed oxide catalysts were prepared and then applied into the dehydrogenation of methylcyclohexane(MCH)in this study.The effects of iridium content,reduction temperature on the activity and stability of the catalysts were studied in detail.In the presence of Ir,metal particle size was decrea sed and electron transfer between Ir and Pt was observed.High reduction temperature increased the metallic Ir content but enlarged the particle size of active site s.During the dehydrogenation reaction on Pt-Ir bimetallic catalyst,MCH was efficiently converted into toluene and PtIr-5/Mg-Al-275 exhibited the highe st activity.After prolonging the residence time and raising the reaction temperature to 350℃the conversion and hydrogen evolution rate were increased to 99.9%and 578.7 mmol·(g Pt)^-1·min^-1,respectively.Moreover,no carbon deposition was observed in the spent catalyst,presenting a high anti-coking ability and good potential for industrial application.
基金supported by the National Natural Science Foundation of China(No.21776236 and 21676225)Scientific Research Fund of Hunan Provincial Education Department(19A478)+2 种基金Natural Science Foundation of Hunan Province(2018JJ2384)Engineering Research Centre of Chemical Process Simulation and Optimization of Ministry of EducationStudents’innovation and entrepreneurship training program of Hunan province。
文摘The great challenge in the aldol condensation of tailored fermentation products(acetone-butanol-ethanol,ABE)into energy intensive fuels is to develop a suitable catalyst with high activity and low-cost.In this study,Co,Ni,and Co-Ni supported on Mg-Al oxide catalysts were prepared and their pore diameters were enlarged via adding active carbon as a hard template into Mg-Al hydrotalcite.During the aldol condensation reaction,the catalyst activity was enhanced after enlarging the pore diameter and Co-Ni bimetal supported catalyst presented the highest activity,which was resulted from that the electron transfer between Co and Ni in Co-Ni alloy enhanced the dehydrogenation activity and large pore lowered the mass transfer resistance.After optimizing the reaction conditions,acetone conversion and the total selectivity of C_(5)-C_(11)desired products in the aldol condensation of ABE reached up to 76%and 90%,respectively.The stability study showed that the activity was decreased with the increase of reaction number because of the oxidation of metallic Co and Ni,but this could be solved via a simple hydrogen reduction method.
基金supported by the National Natural Science Foundation of China(No.31971860).
文摘Straw return can effectively improve farmland soil microenvironment and fertility.However,excessive straw in the topsoil adversely affects seed germination and crop growth.At present,the characteristics and key driving factors of straw decomposition in dry farmlands are unclear.Based on the interactions between tillage practices including zero tillage(ZT),chisel tillage(CT),and plow tillage(PT)and nitrogen(N)fertilization,i.e.,low N(N1,180 kg ha^(-1)),normal N(N2,240 kg ha^(-1)),and high N(N3,300 kg ha^(-1)),quantitative polymerase chain reaction technology and an enzymatic detection kit were used to investigate the effects of key straw C-degrading enzyme activities and microbial abundance in soil on maize straw decomposition during the growth period of winter wheat in the winter wheat/summer maize double cropping system in a dry farmland of the Loess Plateau,China.Between 2018 and 2020,ZT and CT significantly increased winter wheat yield(by 10.94%and 12.79%,respectively)and straw decomposition velocity(by 20%and 26.67%,respectively),compared with PT.Compared to N1 and N3,N2 significantly increased wheat yield(by 4.65%and 5.31%,respectively)and straw decomposition velocity(by 26.33%and 13.21%,respectively).The partial least squares pathway modelling showed significant positive direct effects of soil moisture,NO3-,NH4+,total N,bacteria,and cellulase,laccase,and xylanase activities on straw decomposition,while soil pH,fungi,and Actinomycetes had significant negative direct effects.Overall,conservation tillage(ZT and CT)combined with N2 was beneficial for straw decomposition in the drylands of the Loess Plateau and improved straw resource utilization and basic soil fertility.The results of the study clarified the key drivers of straw decomposition in dry farmlands and provided new ideas for developing updated soil management practices and adaptive N application strategies to promote the resource utilization of straw and achieve the goals of carbon peaking and carbon neutrality.
基金supported by the National Key R&D Program of China(2021YFA0715800,2021YFA0715803)Science Center for Gas Turbine Project(P2021-A-IV-003-001)National Natural Science Foundation of China(52125203,52130205,52002321).
文摘Polysiloxane(PSO)was adopted as the matrix of the repair agents,and SiCeZrB_(2)powder was used as the filler,to repair the prefabricated defects on the SiCeZrB_(2)/SiC(SZS)coating of carbon/carbon(C/C)composites.The repair agents were brushed on the defect areas and then underwent preoxidation(PR)or heat-treatment(HR)in a vacuum.The effects of different treatment processes on the chemical composition,microstructure of the repair agents,and the oxidation resistance behavior of the repaired coating were investigated.The repaired agents after both processes were pyrolyzed and generated SiOC ceramics,and they were well combined with the original coating.The thermal stability of PSO after preoxidation is poorer than that after heat-treatment,resulting in a weight loss rate of 5.88%after oxidation at 1500℃for 270 min,while that of the HR coating is only-0.87%,yet both have been great improvement compared with the unrepaired coating.This work provides an effective and simple approach to repairing damaged coatings for high-temperature applications.
基金Supported by the National Natural Science Foundation of China (No. 61133005)the National High-Tech Research and Development (863) Program of China (No. 2012AA010902)
文摘Face detect application has a real time need in nature. Although Viola-Jones algorithm can handle it elegantly, today's bigger and bigger high quality images and videos still bring in the new challenge of real time needs. It is a good idea to parallel the Viola-Jones algorithm with OpenCL to achieve high performance across both AMD and NVidia GPU platforms without bringing up new algorithms. This paper presents the bottleneck of this application and discusses how to optimize the face detection step by step from a very naive implementation. Some brilliant tricks and methods like CPU execution time hidden, stubbles usage of local memory as high speed scratchpad and manual cache, and variable granularity were used to improve the performance. Those technologies result in 4-13 times speedup varying with the image size. Furthermore those ideas may throw on some light on the way to parallel applications efficiently with OpenCL. Taking face detection as an example, this paper also summarizes some universal advice on how to optimize OpenCL program, trying to help other applications do better on GPU.