Since dielectric elastomers(DEs)exhibit obvious nonlinear visco-hyperelasticity,and remarkable temperature dependence,it is difficult to accurately predict the cyclic deformation of DEs at various temperatures.To addr...Since dielectric elastomers(DEs)exhibit obvious nonlinear visco-hyperelasticity,and remarkable temperature dependence,it is difficult to accurately predict the cyclic deformation of DEs at various temperatures.To address this issue,an improved visco-hyperelastic constitutive model is proposed here to reproduce the complex temperature-dependent cyclic deformation of DEs.In the improved model,the Ogden model is chosen to provide the strain energy density representing the hyper-elastic response,a nonlinear viscosity evolution equation is used to depict the strong viscosity of DEs,and specific temperature-dependent parameters are incorporated to describe the cyclic deformation of DEs at various temperatures.Finally,the prediction capability of the proposed visco-hyperelastic model is validated by reproducing the cyclic deformation of VHB 4910 DE observed in experiments at different temperatures.This study provides a theoretical basis for the rational design of DE devices.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.11972312.
文摘Since dielectric elastomers(DEs)exhibit obvious nonlinear visco-hyperelasticity,and remarkable temperature dependence,it is difficult to accurately predict the cyclic deformation of DEs at various temperatures.To address this issue,an improved visco-hyperelastic constitutive model is proposed here to reproduce the complex temperature-dependent cyclic deformation of DEs.In the improved model,the Ogden model is chosen to provide the strain energy density representing the hyper-elastic response,a nonlinear viscosity evolution equation is used to depict the strong viscosity of DEs,and specific temperature-dependent parameters are incorporated to describe the cyclic deformation of DEs at various temperatures.Finally,the prediction capability of the proposed visco-hyperelastic model is validated by reproducing the cyclic deformation of VHB 4910 DE observed in experiments at different temperatures.This study provides a theoretical basis for the rational design of DE devices.