Herein, we report a bottom-up solvothermal route to synthesize a flexible, highly efficient MoS2@SWNT electrocatalyst for hydrogen evolution reactions (HER). Characterization revealed that branchqike MoS2 nanosheets...Herein, we report a bottom-up solvothermal route to synthesize a flexible, highly efficient MoS2@SWNT electrocatalyst for hydrogen evolution reactions (HER). Characterization revealed that branchqike MoS2 nanosheets containing sulfur- rich sites were in situ uniformly dispersed on free-standing single-walled carbon nanotube (SWNT) film, which could expose more unsaturated sulfur atoms, allowing excellent electrical contact with active sites. The flexible catalyst exhibited excellent HER performance with a low overpotential (-150 mV at 10 ma/cm2) and small Tafel slope (4l mV/dec). To further explain the improved performance, the local electronic structure was investigated by X-ray absorption near-edge structure (XANES) analysis, proving the presence of unsaturated sulfur atoms and strong electronic coupling between MoS2 and SWNT. This study provides an in-situ synthetic route to create new multifunctional flexible hybridized catalysts and useful insights into the relationships electronic structure, and properties among the catalyst microstructure,展开更多
基金We acknowledge the financial support of the National Basic Research Program of China (No. 2014CB848900), the National Natural Science Foundation of China (Nos. U1232131, U1532112, 11375198, and 11574280), the Fundamental Research Funds for the Central Universities (No. WK2310000053), User with Potential from CAS Hefei Science Center (No. 2015HSC-UP020) and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University. L. S. thanks the recruitment program of global experts, the CAS Hundred Talent Program. We also thank the Shanghai synchrotron Radiation Facility (14W1, SSRF), the Beijing Synchrotron Radiation Facility (1W1B and soft-X-ray endstation, BSRF) and the Hefei Synchrotron Radiation Facility (MCD and Photoemission Endstations, NSRL) for help in characterizations.
文摘Herein, we report a bottom-up solvothermal route to synthesize a flexible, highly efficient MoS2@SWNT electrocatalyst for hydrogen evolution reactions (HER). Characterization revealed that branchqike MoS2 nanosheets containing sulfur- rich sites were in situ uniformly dispersed on free-standing single-walled carbon nanotube (SWNT) film, which could expose more unsaturated sulfur atoms, allowing excellent electrical contact with active sites. The flexible catalyst exhibited excellent HER performance with a low overpotential (-150 mV at 10 ma/cm2) and small Tafel slope (4l mV/dec). To further explain the improved performance, the local electronic structure was investigated by X-ray absorption near-edge structure (XANES) analysis, proving the presence of unsaturated sulfur atoms and strong electronic coupling between MoS2 and SWNT. This study provides an in-situ synthetic route to create new multifunctional flexible hybridized catalysts and useful insights into the relationships electronic structure, and properties among the catalyst microstructure,