The roles of lnc RNAs in the infection of enteroviruses have been barely demonstrated. In this study, we used coxsackievirus B3(CVB3), a typical enterovirus, as a model to investigate the expression profiles and funct...The roles of lnc RNAs in the infection of enteroviruses have been barely demonstrated. In this study, we used coxsackievirus B3(CVB3), a typical enterovirus, as a model to investigate the expression profiles and functional roles of lnc RNAs in enterovirus infection. We profiled lnc RNAs and m RNA expression in CVB3-infected He La cells by lnc RNA-m RNA integrated microarrays. As a result, 700 differentially expressed lnc RNAs(431 up-regulated and 269 down-regulated) and665 differentially expressed m RNAs(299 up-regulated and 366 down-regulated) were identified in CVB3 infection. Then we performed lnc RNA-m RNA integrated pathway analysis to identify potential functional impacts of the differentially expressed m RNAs, in which lnc RNA-m RNA correlation network was built. According to lnc RNA-m RNA correlation, we found that XLOC-001188, an lnc RNA down-regulated in CVB3 infection, was negatively correlated with NFAT5 m RNA,an anti-CVB3 gene reported previously. This interaction was supported by q PCR detection following si RNA-mediated knockdown of XLOC-001188, which showed an increase of NFAT5 m RNA and a reduction of CVB3 genomic RNA. In addition, we observed that four most significantly altered lnc RNAs, SNHG11, RP11-145 F16.2, RP11-1023 L17.1 and RP11-1021 N1.2 share several common correlated genes critical for CVB3 infection, such as BRE and IRF2 BP1. In all, our studies reveal the alteration of lnc RNA expression in CVB3 infection and its potential influence on CVB3 replication,providing useful information for future studies of enterovirus infection.展开更多
Stress granules(SGs) are intracellular granules formed when cellular translation is blocked and have been reported to be involved in a variety of viral infections. Our previous studies revealed that SGs are involved i...Stress granules(SGs) are intracellular granules formed when cellular translation is blocked and have been reported to be involved in a variety of viral infections. Our previous studies revealed that SGs are involved in the coxsackievirus B(CVB)infection process, but the role of SGs in CVB infection has not been fully explored. In this study, we found that CVB type 3(CVB3) could induce SG formation in the early phase of infection. Results showed that levels of CVB3 RNA and protein were significantly inhibited during the early stage of CVB3 infection by the elevated formation of SGs, while viral RNA and protein synthesis were significantly promoted when SG formation was blocked. Our findings suggest that SG formation is one of the early antiviral mechanisms for host cells against CVB infection.展开更多
基金supported by the National Natural Science Foundation of China (81101234 to Lei Tong 81571999, 81871652 to Zhaohua Zhong+9 种基金 31470260 to Xingyi Ge 81672007 to Wenran Zhao 81772188 to Yan Wang)the Foundation of Heilongjiang Provincial Postdoctor of China (LBH-Z11076 to Lei Tong)the China Postdoctoral Science Foundation (2015M580269 to Lexun Lin)the Research Foundation of Education Bureau of Heilongjiang Province (12511176 to Lei Tong)the Hu-Xiang Youth Talents Scholar Program of Hunan Province (2017RS3017 to Xingyi Ge)Health and Family Planning Commission of Heilongjiang Province (2016-165 to Lexun Lin)the Provincial Natural Science Foundation of Hunan Province (Grant Number 2019JJ50035 to Ye Qiu)the Fundamental Research Funds for the Central Universities of China (Grant Number 531107051162 to Ye Qiu)
文摘The roles of lnc RNAs in the infection of enteroviruses have been barely demonstrated. In this study, we used coxsackievirus B3(CVB3), a typical enterovirus, as a model to investigate the expression profiles and functional roles of lnc RNAs in enterovirus infection. We profiled lnc RNAs and m RNA expression in CVB3-infected He La cells by lnc RNA-m RNA integrated microarrays. As a result, 700 differentially expressed lnc RNAs(431 up-regulated and 269 down-regulated) and665 differentially expressed m RNAs(299 up-regulated and 366 down-regulated) were identified in CVB3 infection. Then we performed lnc RNA-m RNA integrated pathway analysis to identify potential functional impacts of the differentially expressed m RNAs, in which lnc RNA-m RNA correlation network was built. According to lnc RNA-m RNA correlation, we found that XLOC-001188, an lnc RNA down-regulated in CVB3 infection, was negatively correlated with NFAT5 m RNA,an anti-CVB3 gene reported previously. This interaction was supported by q PCR detection following si RNA-mediated knockdown of XLOC-001188, which showed an increase of NFAT5 m RNA and a reduction of CVB3 genomic RNA. In addition, we observed that four most significantly altered lnc RNAs, SNHG11, RP11-145 F16.2, RP11-1023 L17.1 and RP11-1021 N1.2 share several common correlated genes critical for CVB3 infection, such as BRE and IRF2 BP1. In all, our studies reveal the alteration of lnc RNA expression in CVB3 infection and its potential influence on CVB3 replication,providing useful information for future studies of enterovirus infection.
基金supported by the Natural Science Foundation of China(Grant 81571999 to Z Zhong81672007 to W Zhao+1 种基金81772188 to Y Wang,31300144 to T Wang)support from Heilongjiang Provincial Key Laboratory of Pathogens and Immunity and Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity of Harbin Medical University
文摘Stress granules(SGs) are intracellular granules formed when cellular translation is blocked and have been reported to be involved in a variety of viral infections. Our previous studies revealed that SGs are involved in the coxsackievirus B(CVB)infection process, but the role of SGs in CVB infection has not been fully explored. In this study, we found that CVB type 3(CVB3) could induce SG formation in the early phase of infection. Results showed that levels of CVB3 RNA and protein were significantly inhibited during the early stage of CVB3 infection by the elevated formation of SGs, while viral RNA and protein synthesis were significantly promoted when SG formation was blocked. Our findings suggest that SG formation is one of the early antiviral mechanisms for host cells against CVB infection.