Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native ...Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native plants interact with the quantity and activity of nutrient-acquisition agents.Here a pot experiment was conducted with monoculture and mixed plantings of an invasive plant,Xanthium strumarium,and a common native legume,Glycine max.We measured traits related to root and nodule quantity and activity and mycorrhizal colonization.Compared to the monoculture,fine root quantity(biomass,surface area)and activity(root nitrogen(N)concentration,acid phosphatase activity)of G.max decreased in mixed plantings;nodule quantity(biomass)decreased by 45%,while nodule activity in Nfixing via rhizobium increased by 106%;mycorrhizal colonization was unaffected.Contribution of N fixation to leaf N content in G.max increased in the mixed plantings,and this increase was attributed to a decrease in the rhizosphere soil N of G.max in the mixed plantings.Increased root quantity and activity,along with a higher mycorrhizal association was observed in X.strumarium in the mixed compared to monoculture.Together,the invasive plant did not directly scavenge N from nodule-fixed N,but rather depleted the rhizosphere soil N of the legume,thereby stimulating the activity of N-fixation and increasing the dependence of the native legume on this N source.The quantity-activity framework holds promise for future studies on how native legumes respond to alien plant invasions.展开更多
Increasing field experiments have been conducted in forests to better understand the response of plant growth and photosynthesis to climatic warming. However,it is still unknown whether there is a general pattern in r...Increasing field experiments have been conducted in forests to better understand the response of plant growth and photosynthesis to climatic warming. However,it is still unknown whether there is a general pattern in relation to how and to what extent warming impacts woody plants in forests. In this study, a meta-analysis was conducted to investigate the warming effects. When temperatures increased between 0.3 and 10 ℃, specific leaf area(SLA) was significantly increased by 5.9%, plant height by 7.8%, biomass by 21.9%, foliar calcium(Ca) and manganese(Mn) concentrations by 20.7% and 39.6% and net photosynthetic rate(Pn) by 9.9%. Enhanced growth and Pn may have a relationship with changing SLA, efficiency of PSⅡ(photosystem Ⅱ), photosynthetic pigment concentrations and foliar nutrients. The results will be useful to understand the underlying mechanisms of forests responding to global warming.展开更多
基金funded by the National Natural Science Foundation of China (32171746,31870522,42077450,32371786)the leading talents of basic research in Henan Province+3 种基金Funding for Characteristic and Backbone Forestry Discipline Group of Henan Provincethe Scientific Research Foundation of Henan Agricultural University (30500854)Research Funds for overseas returnee in Henan Province,Chinasupported by National Key Research and Development Program of China (2019YFE0117000)。
文摘Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native plants interact with the quantity and activity of nutrient-acquisition agents.Here a pot experiment was conducted with monoculture and mixed plantings of an invasive plant,Xanthium strumarium,and a common native legume,Glycine max.We measured traits related to root and nodule quantity and activity and mycorrhizal colonization.Compared to the monoculture,fine root quantity(biomass,surface area)and activity(root nitrogen(N)concentration,acid phosphatase activity)of G.max decreased in mixed plantings;nodule quantity(biomass)decreased by 45%,while nodule activity in Nfixing via rhizobium increased by 106%;mycorrhizal colonization was unaffected.Contribution of N fixation to leaf N content in G.max increased in the mixed plantings,and this increase was attributed to a decrease in the rhizosphere soil N of G.max in the mixed plantings.Increased root quantity and activity,along with a higher mycorrhizal association was observed in X.strumarium in the mixed compared to monoculture.Together,the invasive plant did not directly scavenge N from nodule-fixed N,but rather depleted the rhizosphere soil N of the legume,thereby stimulating the activity of N-fixation and increasing the dependence of the native legume on this N source.The quantity-activity framework holds promise for future studies on how native legumes respond to alien plant invasions.
基金funded by the National Natural Science Foundation of China(NSFC No.31500416)Research Funds for the Introduction of Talents of Shanghai Science and Technology Museum
文摘Increasing field experiments have been conducted in forests to better understand the response of plant growth and photosynthesis to climatic warming. However,it is still unknown whether there is a general pattern in relation to how and to what extent warming impacts woody plants in forests. In this study, a meta-analysis was conducted to investigate the warming effects. When temperatures increased between 0.3 and 10 ℃, specific leaf area(SLA) was significantly increased by 5.9%, plant height by 7.8%, biomass by 21.9%, foliar calcium(Ca) and manganese(Mn) concentrations by 20.7% and 39.6% and net photosynthetic rate(Pn) by 9.9%. Enhanced growth and Pn may have a relationship with changing SLA, efficiency of PSⅡ(photosystem Ⅱ), photosynthetic pigment concentrations and foliar nutrients. The results will be useful to understand the underlying mechanisms of forests responding to global warming.