Separable multi-block convex optimization problem appears in many mathematical and engineering fields.In the first part of this paper,we propose an inertial proximal ADMM to solve a linearly constrained separable mult...Separable multi-block convex optimization problem appears in many mathematical and engineering fields.In the first part of this paper,we propose an inertial proximal ADMM to solve a linearly constrained separable multi-block convex optimization problem,and we show that the proposed inertial proximal ADMM has global convergence under mild assumptions on the regularization matrices.Affine phase retrieval arises in holography,data separation and phaseless sampling,and it is also considered as a nonhomogeneous version of phase retrieval,which has received considerable attention in recent years.Inspired by convex relaxation of vector sparsity and matrix rank in compressive sensing and by phase lifting in phase retrieval,in the second part of this paper,we introduce a compressive affine phase retrieval via lifting approach to connect affine phase retrieval with multi-block convex optimization,and then based on the proposed inertial proximal ADMM for 3-block convex optimization,we propose an algorithm to recover sparse real signals from their(noisy)affine quadratic measurements.Our numerical simulations show that the proposed algorithm has satisfactory performance for affine phase retrieval of sparse real signals.展开更多
基金Supported by the Natural Science Foundation of China(Grant Nos.12271050,12201268)CAEP Foundation(Grant No.CX20200027)+2 种基金Key Laboratory of Computational Physics Foundation(Grant No.6142A05210502)Science and Technology Program of Gansu Province of China(Grant No.21JR7RA511)the National Science Foundation(DMS 1816313)。
文摘Separable multi-block convex optimization problem appears in many mathematical and engineering fields.In the first part of this paper,we propose an inertial proximal ADMM to solve a linearly constrained separable multi-block convex optimization problem,and we show that the proposed inertial proximal ADMM has global convergence under mild assumptions on the regularization matrices.Affine phase retrieval arises in holography,data separation and phaseless sampling,and it is also considered as a nonhomogeneous version of phase retrieval,which has received considerable attention in recent years.Inspired by convex relaxation of vector sparsity and matrix rank in compressive sensing and by phase lifting in phase retrieval,in the second part of this paper,we introduce a compressive affine phase retrieval via lifting approach to connect affine phase retrieval with multi-block convex optimization,and then based on the proposed inertial proximal ADMM for 3-block convex optimization,we propose an algorithm to recover sparse real signals from their(noisy)affine quadratic measurements.Our numerical simulations show that the proposed algorithm has satisfactory performance for affine phase retrieval of sparse real signals.