Background Pyruvate phosphate dikinase (PPDK) reversibly catalyzes the interconversion of phosphoenolpyruvate (PEP) and pyruvic acid,leading to catabolism and adenosine triphosphate (ATP) synthesis or gluconeoge...Background Pyruvate phosphate dikinase (PPDK) reversibly catalyzes the interconversion of phosphoenolpyruvate (PEP) and pyruvic acid,leading to catabolism and adenosine triphosphate (ATP) synthesis or gluconeogenesis and ATP consumption.Molecular modeling of PPDKs from divergent organisms demonstrates that the orientation of the phosphorylatable histidine residue within the central domain of PPDK determines whether this enzyme promotes catabolism or gluconeogenesis.The goal of this study was to determine whether PDDK from Giardia underwent adaptive evolution in order to produce more energy under anaerobic conditions.Methods A total of 123 PPDK sequences from protozoans,proteobacteria,plants,and algae were selected,based upon sequence similarities to Giardia lamblia PPDK and Zea mays PPDK.Three-dimensional (3-D) models were generated for PPDKs from divergent organisms and were used to compare the orientation of the phosphorylatable histidine residue within the central domain of PPDKs.These PPDKs were compared using a maximum-likelihood tree.Results For PPDK from Giardia,as well as from other anaerobic protozoans,the central domain tilted toward the N-terminal nucleotide-binding domain,indicating that this enzyme catalyzed ATP synthesis.Furthermore,the orientation of this central domain was determined by interactions between the N-and C-terminal domains.Phylogenetic analysis of the N-and C-terminal sequences of PPDKs from different species suggested that PPDK has likely undergone adaptive evolution in response to differences in environmental and metabolic conditions.Conclusion These results suggested that PPDK in anaerobic organisms is functionally adapted to generate energy more efficiently in an anaerobic environment.展开更多
Several groups of parasitic protozoa, as represented by Giardia, Trichomonas, En-tamoeba and Microsporida, were once widely considered to be the most primitive extant eu-karyotic group―Archezoa. The main evidence for...Several groups of parasitic protozoa, as represented by Giardia, Trichomonas, En-tamoeba and Microsporida, were once widely considered to be the most primitive extant eu-karyotic group―Archezoa. The main evidence for this is their ‘lacking mitochondria’ and pos-sessing some other primitive features between prokaryotes and eukaryotes, and being basal to all eukaryotes with mitochondria in phylogenies inferred from many molecules. Some authors even proposed that these organisms diverged before the endosymbiotic origin of mitochondria within eukaryotes. This view was once considered to be very significant to the study of origin and evolution of eukaryotic cells (eukaryotes). However, in recent years this has been challenged by accumulating evidence from new studies. Here the sequences of DNA topoisomerase II in G. lamblia, T. vaginalis and E. histolytica were identified first by PCR and sequencing, then com-bining with the sequence data of the microsporidia Encephalitozoon cunicul and other eukaryotic groups of different evolutionary positions from GenBank, phylogenetic trees were constructed by various methods to investigate the evolutionary positions of these amitochondriate protozoa. Our results showed that since the characteristics of DNA topoisomerase II make it avoid the defect of ‘long-branch attraction’ appearing in the previous phylogenetic analyses, our trees can not only reflect effectively the relationship of different major eukaryotic groups, which is widely accepted, but also reveal phylogenetic positions for these amitochondriate protozoa, which is different from the previous phylogenetic trees. They are not the earliest-branching eukaryotes, but diverged after some mitochondriate organisms such as kinetoplastids and mycetozoan; they are not a united group but occupy different phylogenetic positions. Combining with the recent cytological findings of mitochondria-like organelles in them, we think that though some of them (e.g. diplo-monads, as represented by Giardia) may occupy a very low evolutionary position, generally these organisms are not as extremely primitive as was thought before; they should be poly-phyletic groups diverging after the endosymbiotic origin of mitochondrion to adapt themselves to anaerobic parasitic life.展开更多
基金This work was supported by grants from the State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (No. GREKF08-07), the National Natural Science Foundation of China (No. 81301450) and the Jilin Provincial Science and Technology Department of China (No. 20130413035GH)
文摘Background Pyruvate phosphate dikinase (PPDK) reversibly catalyzes the interconversion of phosphoenolpyruvate (PEP) and pyruvic acid,leading to catabolism and adenosine triphosphate (ATP) synthesis or gluconeogenesis and ATP consumption.Molecular modeling of PPDKs from divergent organisms demonstrates that the orientation of the phosphorylatable histidine residue within the central domain of PPDK determines whether this enzyme promotes catabolism or gluconeogenesis.The goal of this study was to determine whether PDDK from Giardia underwent adaptive evolution in order to produce more energy under anaerobic conditions.Methods A total of 123 PPDK sequences from protozoans,proteobacteria,plants,and algae were selected,based upon sequence similarities to Giardia lamblia PPDK and Zea mays PPDK.Three-dimensional (3-D) models were generated for PPDKs from divergent organisms and were used to compare the orientation of the phosphorylatable histidine residue within the central domain of PPDKs.These PPDKs were compared using a maximum-likelihood tree.Results For PPDK from Giardia,as well as from other anaerobic protozoans,the central domain tilted toward the N-terminal nucleotide-binding domain,indicating that this enzyme catalyzed ATP synthesis.Furthermore,the orientation of this central domain was determined by interactions between the N-and C-terminal domains.Phylogenetic analysis of the N-and C-terminal sequences of PPDKs from different species suggested that PPDK has likely undergone adaptive evolution in response to differences in environmental and metabolic conditions.Conclusion These results suggested that PPDK in anaerobic organisms is functionally adapted to generate energy more efficiently in an anaerobic environment.
基金This work was supported by the Important Direction of Knowledge Innovation Program from Chinese Academy of Sciences(Grant No.KSCX2-SW-101C)National Natural Science Foundat ion of China(Grant Nos.90408016,30021004&30170135)Yunnan Province(Grant No.2000YP19).
文摘Several groups of parasitic protozoa, as represented by Giardia, Trichomonas, En-tamoeba and Microsporida, were once widely considered to be the most primitive extant eu-karyotic group―Archezoa. The main evidence for this is their ‘lacking mitochondria’ and pos-sessing some other primitive features between prokaryotes and eukaryotes, and being basal to all eukaryotes with mitochondria in phylogenies inferred from many molecules. Some authors even proposed that these organisms diverged before the endosymbiotic origin of mitochondria within eukaryotes. This view was once considered to be very significant to the study of origin and evolution of eukaryotic cells (eukaryotes). However, in recent years this has been challenged by accumulating evidence from new studies. Here the sequences of DNA topoisomerase II in G. lamblia, T. vaginalis and E. histolytica were identified first by PCR and sequencing, then com-bining with the sequence data of the microsporidia Encephalitozoon cunicul and other eukaryotic groups of different evolutionary positions from GenBank, phylogenetic trees were constructed by various methods to investigate the evolutionary positions of these amitochondriate protozoa. Our results showed that since the characteristics of DNA topoisomerase II make it avoid the defect of ‘long-branch attraction’ appearing in the previous phylogenetic analyses, our trees can not only reflect effectively the relationship of different major eukaryotic groups, which is widely accepted, but also reveal phylogenetic positions for these amitochondriate protozoa, which is different from the previous phylogenetic trees. They are not the earliest-branching eukaryotes, but diverged after some mitochondriate organisms such as kinetoplastids and mycetozoan; they are not a united group but occupy different phylogenetic positions. Combining with the recent cytological findings of mitochondria-like organelles in them, we think that though some of them (e.g. diplo-monads, as represented by Giardia) may occupy a very low evolutionary position, generally these organisms are not as extremely primitive as was thought before; they should be poly-phyletic groups diverging after the endosymbiotic origin of mitochondrion to adapt themselves to anaerobic parasitic life.