In this paper, sodium cobalt tetracarbonyl (NaCo(CO)4) was synthesized by using sodium dithionite and zinc powder as the reduction system and cobalt hexahydrate acetate as the precursor in the presence of methanol...In this paper, sodium cobalt tetracarbonyl (NaCo(CO)4) was synthesized by using sodium dithionite and zinc powder as the reduction system and cobalt hexahydrate acetate as the precursor in the presence of methanol solvent. Methyl 3-hydroxypropionate was synthesized via hydroesterification of ethylene oxide (EO) catalyzed by NaCo(CO)4. The influencing factors on the reaction results were discussed, including the different ligands, the molar ratio of solvent and ethylene oxide, the reaction temperature, the reaction time, and the reaction pressure. An optimal catalytic system was obtained by using 3-hydroxypyridine as the ligoad under reaction conditions covering a reaction temperature 65 ℃, a reaction time of 7 h, a reaction pressure of 6 MPa, and a methoaol/EO molar ratio of 3:2. Under the optimal conditions, the conversion of ethylene oxide was equal to 97.86%, while the selectivity and yield of methyl 3-hydroxypropionate reached 88.19% and 86.30%, respectively. Finally, the reaction mechanism of hydroesterification of ethylene oxide catalyzed by NaCo(CO)4 was proposed.展开更多
基金supported by the Guangdong Province Natural Science Foundation (No.10152500002000019)the Maoming City Science and Technology Planning Project(No.2014069)
文摘In this paper, sodium cobalt tetracarbonyl (NaCo(CO)4) was synthesized by using sodium dithionite and zinc powder as the reduction system and cobalt hexahydrate acetate as the precursor in the presence of methanol solvent. Methyl 3-hydroxypropionate was synthesized via hydroesterification of ethylene oxide (EO) catalyzed by NaCo(CO)4. The influencing factors on the reaction results were discussed, including the different ligands, the molar ratio of solvent and ethylene oxide, the reaction temperature, the reaction time, and the reaction pressure. An optimal catalytic system was obtained by using 3-hydroxypyridine as the ligoad under reaction conditions covering a reaction temperature 65 ℃, a reaction time of 7 h, a reaction pressure of 6 MPa, and a methoaol/EO molar ratio of 3:2. Under the optimal conditions, the conversion of ethylene oxide was equal to 97.86%, while the selectivity and yield of methyl 3-hydroxypropionate reached 88.19% and 86.30%, respectively. Finally, the reaction mechanism of hydroesterification of ethylene oxide catalyzed by NaCo(CO)4 was proposed.