The feasibility of three-dimensional (3D) printing technology cgmbined with minimally invasive surgery in the treatment of pubic rami fractures was explored.From August 2015 to October 2017,a series of 30 patients who...The feasibility of three-dimensional (3D) printing technology cgmbined with minimally invasive surgery in the treatment of pubic rami fractures was explored.From August 2015 to October 2017,a series of 30 patients who underwent surgical stabilization of their anterior pelvic ring (all utilizing the 3D printing technology)by one surgeon at a single hospital were studied.The minimally invasive incisions were made through anterior inferior cilia spine and pubic nodule.Data collected included the operative duration,the blood loss,the damage of the important tissue,the biographic union and therecovery of the function after the operation.Measurements on inlet and outlet pelvic cardiograph were made immediately post-operation and at all follow-up clinic visits.The scores of reduction and function were measured during follow-up.Results showed that the wounds of 30 patients were healed in the first stage,and there was no injury of important structures such as blood vessels and nerves.According to the Matta criteria,excellent effectiveness was obtained in 22 cases and good in 8 cases.According to the functional evaluation criteria of Majeed,excellent effectiveness was obtained in 21 cases and good in 9 cases.It was suggested that the 3D printing technology assisted by minimally invasive surgery can better evaluate the pelvic fracture before operation,which was helpful in plate modeling, and can shorten surgery duration and reduce intraoperative blood loss and complications. The positioning accuracy was improved,and better surgical result was finally achieved.展开更多
Ethane,the second most abundant gaseous hydrocarbon in vast anoxic environments,is an overlooked greenhouse gas.Microbial anaerobic oxidation of ethane can be driven by available electron acceptors such as sulfate and...Ethane,the second most abundant gaseous hydrocarbon in vast anoxic environments,is an overlooked greenhouse gas.Microbial anaerobic oxidation of ethane can be driven by available electron acceptors such as sulfate and nitrate.However,despite nitrite being a more thermodynamically feasible electron acceptor than sulfate or nitrate,little is known about nitrite-driven anaerobic ethane oxidation.In this study,a microbial culture capable of nitrite-driven anaerobic ethane oxidation was enriched through the long-term operation of a nitrite-and-ethane-fed bioreactor.During continuous operation,the nitrite removal rate and the theoretical ethane oxidation rate remained stable at approximately 25.0 mg NO_(2) eN L^(-1) d^(-1) and 11.48 mg C2H6 L^(-1) d^(-1),respectively.Batch tests demonstrated that ethane is essential for nitrite removal in this microbial culture.Metabolic function analysis revealed that a species affiliated with a novel genus within the family Rhodocyclaceae,designated as'Candidatus Alkanivoras nitrosoreducens',may perform the nitrite-driven anaerobic ethane oxidation.In the proposed metabolic model,despite the absence of known genes for ethane conversion to ethyl-succinate and succinate-CoA ligase,'Ca.A.nitrosoreducens'encodes a prospective fumarate addition pathway for anaerobic ethane oxidation and a complete denitrification pathway for nitrite reduction to nitrogen.These findings advance our understanding of nitrite-driven anaerobic ethane oxidation,highlighting the previously overlooked impact of anaerobic ethane oxidation in natural ecosystems.展开更多
文摘The feasibility of three-dimensional (3D) printing technology cgmbined with minimally invasive surgery in the treatment of pubic rami fractures was explored.From August 2015 to October 2017,a series of 30 patients who underwent surgical stabilization of their anterior pelvic ring (all utilizing the 3D printing technology)by one surgeon at a single hospital were studied.The minimally invasive incisions were made through anterior inferior cilia spine and pubic nodule.Data collected included the operative duration,the blood loss,the damage of the important tissue,the biographic union and therecovery of the function after the operation.Measurements on inlet and outlet pelvic cardiograph were made immediately post-operation and at all follow-up clinic visits.The scores of reduction and function were measured during follow-up.Results showed that the wounds of 30 patients were healed in the first stage,and there was no injury of important structures such as blood vessels and nerves.According to the Matta criteria,excellent effectiveness was obtained in 22 cases and good in 8 cases.According to the functional evaluation criteria of Majeed,excellent effectiveness was obtained in 21 cases and good in 9 cases.It was suggested that the 3D printing technology assisted by minimally invasive surgery can better evaluate the pelvic fracture before operation,which was helpful in plate modeling, and can shorten surgery duration and reduce intraoperative blood loss and complications. The positioning accuracy was improved,and better surgical result was finally achieved.
基金The authors would like to thank the Natural Science Foundation of China(Grant No.52270032)the Fundamental Research Funds for the Central Universities(Grant No.HIT.BRET.2021014)+2 种基金the Fok Ying Tung Education Foundation,State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(2023DX09)the Heilongjiang Nature Science Foundation(YQ2021E028)Heilongjiang Touyan Innovation Team Program for supporting this study.
文摘Ethane,the second most abundant gaseous hydrocarbon in vast anoxic environments,is an overlooked greenhouse gas.Microbial anaerobic oxidation of ethane can be driven by available electron acceptors such as sulfate and nitrate.However,despite nitrite being a more thermodynamically feasible electron acceptor than sulfate or nitrate,little is known about nitrite-driven anaerobic ethane oxidation.In this study,a microbial culture capable of nitrite-driven anaerobic ethane oxidation was enriched through the long-term operation of a nitrite-and-ethane-fed bioreactor.During continuous operation,the nitrite removal rate and the theoretical ethane oxidation rate remained stable at approximately 25.0 mg NO_(2) eN L^(-1) d^(-1) and 11.48 mg C2H6 L^(-1) d^(-1),respectively.Batch tests demonstrated that ethane is essential for nitrite removal in this microbial culture.Metabolic function analysis revealed that a species affiliated with a novel genus within the family Rhodocyclaceae,designated as'Candidatus Alkanivoras nitrosoreducens',may perform the nitrite-driven anaerobic ethane oxidation.In the proposed metabolic model,despite the absence of known genes for ethane conversion to ethyl-succinate and succinate-CoA ligase,'Ca.A.nitrosoreducens'encodes a prospective fumarate addition pathway for anaerobic ethane oxidation and a complete denitrification pathway for nitrite reduction to nitrogen.These findings advance our understanding of nitrite-driven anaerobic ethane oxidation,highlighting the previously overlooked impact of anaerobic ethane oxidation in natural ecosystems.