Amorphous A1MgB thin films were synthesized via a combinatorial sputtering approach. The properties of AIMgB films with the varying deposition temperature was investigated. The deposition temperature was found to domi...Amorphous A1MgB thin films were synthesized via a combinatorial sputtering approach. The properties of AIMgB films with the varying deposition temperature was investigated. The deposition temperature was found to dominate the hardness of the amorphous asdeposited film. The hardness increases with increasing deposition tempera ture and may even exceed that of crystalline A1MgB14 mate rial. The high hardness may be attributed to the existence of randomly distributed B 12 icosahedra structure. Therefore, the thin film that was deposited on cemented carbide shows well cutting performances in turning Ti alloy bar. At the same time, an appropriate method of pretreatment is the key to ensure the coating tool with the excellent adhesion by impact fracture test.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(No.DUT10JN08)the Natural Science Foundation of Jiangsu Province(No.BK2011252)the Industry Science and Technology Supported Plan of Changzhou(No.CE20110012)
文摘Amorphous A1MgB thin films were synthesized via a combinatorial sputtering approach. The properties of AIMgB films with the varying deposition temperature was investigated. The deposition temperature was found to dominate the hardness of the amorphous asdeposited film. The hardness increases with increasing deposition tempera ture and may even exceed that of crystalline A1MgB14 mate rial. The high hardness may be attributed to the existence of randomly distributed B 12 icosahedra structure. Therefore, the thin film that was deposited on cemented carbide shows well cutting performances in turning Ti alloy bar. At the same time, an appropriate method of pretreatment is the key to ensure the coating tool with the excellent adhesion by impact fracture test.