Background:Over past two decades,vagus nerve stimulation (VNS) has been widely used and reported to alleviate seizure frequency worldwide,however,so far,only hundreds of patients with pharmaco-resistant epilepsy (...Background:Over past two decades,vagus nerve stimulation (VNS) has been widely used and reported to alleviate seizure frequency worldwide,however,so far,only hundreds of patients with pharmaco-resistant epilepsy (PRE) have been treated with VNS in China's Mainland.The study aimed to evaluate the effectiveness of VNS for Chinese patients with PRE and compare its relationship with age cohort and gender.Methods:We retrospectively assessed the clinical outcome of 94 patients with PRE,who were treated with VNS at Beijing Fengtai Hospital and Beij ing Tiantan Hospital between November 2008 and April 2014 from our database of 106 consecutive patients.The clinical data analysis was retrospectively examined.Results:Seizure frequency significantly decreased with VNS therapy after intermittent stimulation of the vagus nerve.At last follow-up,we found McHugh classifications of Class Ⅰ in 33 patients (35.1%),Class Ⅱ in 27 patients (28.7%),Class Ⅲ in 20 patients (21.3%),Class Ⅳ in 3 patients (3.2%),and Class Ⅴ in 11 patients (l 1.7%).Notably,8 (8.5%) patients were seizure-free while ≥50% seizure frequency reduction occurred in as many as 60 patients (63.8%).Furthermore,with regard to the modified Engel classification,12 patients (12.8%) were classified as Class Ⅰ,l l patients (11.7%) were classified as Class Ⅱ,37 patients (39.4%) were classified as Class Ⅲ,34 patients (36.2%) were classified as Class Ⅳ.We also found that the factors of gender or age are not associated with clinical outcome.Conclusions:This comparative study confirmed that VNS is a safe,well-tolerated,and effective treatment for Chinese PRE patients.VNS reduced the seizure frequency regardless of age or gender of studied patients.展开更多
Background:Recent clinical and preclinical studies have suggested that deep brain stimulation (DBS) can be used as a tool to enhance cognitive functions.The aim of the present study was to investigate the impact of...Background:Recent clinical and preclinical studies have suggested that deep brain stimulation (DBS) can be used as a tool to enhance cognitive functions.The aim of the present study was to investigate the impact of DBS at three separate targets in the Papez circuit,including the anterior nucleus of thalamus (ANT),the entorhinal cortex (EC),and the fornix (FX),on cognitive behaviors in an Alzheimer's disease (AD) rat model.Methods:Forty-eight rats were subjected to an intrahippocampal injection ofamyloid peptides 1-42 to induce an AD model.Rats were divided into six groups:DBS and sham DBS groups of ANT,EC,and FX.Spatial learning and memory were assessed by the Morris water maze (MWM).Recognition memory was investigated by the novel object recognition memory test (NORM).Locomotor and anxiety-related behaviors were detected by the open field test (OF).By using two-way analysis of variance (ANOVA),behavior differences between the six groups were analyzed.Results:In the MWM,the ANT,EC,and FX DBS groups performed differently in terms of the time spent in the platform zone (F(2.23) =6.04,P < 0.01),the frequency of platform crossing (F(2,23) =11.53,P < 0.001),and the percent time spent within the platform quadrant (F(2,23) =6.29,P < 0.01).In the NORM,the EC and FX DBS groups spent more time with the novel object,although the ANT DBS group did not (F(2,23) =10.03,P < 0.001).In the OF,all of the groups showed a similar total distance moved (F(1.42) =1.14,P =0.29)and relative time spent in the center (F(2,42) =0.56,P =0.58).Conclusions:Our results demonstrated that DBS of the EC and FX facilitated hippocampus-dependent spatial memory more prominently thanANT DBS.In addition,hippocampus-independent recognition memory was enhanced by EC and FX DBS.None of the targets showed side-effects of anxiety or locomotor behaviors.展开更多
文摘Background:Over past two decades,vagus nerve stimulation (VNS) has been widely used and reported to alleviate seizure frequency worldwide,however,so far,only hundreds of patients with pharmaco-resistant epilepsy (PRE) have been treated with VNS in China's Mainland.The study aimed to evaluate the effectiveness of VNS for Chinese patients with PRE and compare its relationship with age cohort and gender.Methods:We retrospectively assessed the clinical outcome of 94 patients with PRE,who were treated with VNS at Beijing Fengtai Hospital and Beij ing Tiantan Hospital between November 2008 and April 2014 from our database of 106 consecutive patients.The clinical data analysis was retrospectively examined.Results:Seizure frequency significantly decreased with VNS therapy after intermittent stimulation of the vagus nerve.At last follow-up,we found McHugh classifications of Class Ⅰ in 33 patients (35.1%),Class Ⅱ in 27 patients (28.7%),Class Ⅲ in 20 patients (21.3%),Class Ⅳ in 3 patients (3.2%),and Class Ⅴ in 11 patients (l 1.7%).Notably,8 (8.5%) patients were seizure-free while ≥50% seizure frequency reduction occurred in as many as 60 patients (63.8%).Furthermore,with regard to the modified Engel classification,12 patients (12.8%) were classified as Class Ⅰ,l l patients (11.7%) were classified as Class Ⅱ,37 patients (39.4%) were classified as Class Ⅲ,34 patients (36.2%) were classified as Class Ⅳ.We also found that the factors of gender or age are not associated with clinical outcome.Conclusions:This comparative study confirmed that VNS is a safe,well-tolerated,and effective treatment for Chinese PRE patients.VNS reduced the seizure frequency regardless of age or gender of studied patients.
基金This study was supported by grants from the National Natural Science Foundation of China,the Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding,the Scientific Research Common Program of Beijing Municipal Commission of Education (No.KZ201510025029).Conflict of Interest:None declared
文摘Background:Recent clinical and preclinical studies have suggested that deep brain stimulation (DBS) can be used as a tool to enhance cognitive functions.The aim of the present study was to investigate the impact of DBS at three separate targets in the Papez circuit,including the anterior nucleus of thalamus (ANT),the entorhinal cortex (EC),and the fornix (FX),on cognitive behaviors in an Alzheimer's disease (AD) rat model.Methods:Forty-eight rats were subjected to an intrahippocampal injection ofamyloid peptides 1-42 to induce an AD model.Rats were divided into six groups:DBS and sham DBS groups of ANT,EC,and FX.Spatial learning and memory were assessed by the Morris water maze (MWM).Recognition memory was investigated by the novel object recognition memory test (NORM).Locomotor and anxiety-related behaviors were detected by the open field test (OF).By using two-way analysis of variance (ANOVA),behavior differences between the six groups were analyzed.Results:In the MWM,the ANT,EC,and FX DBS groups performed differently in terms of the time spent in the platform zone (F(2.23) =6.04,P < 0.01),the frequency of platform crossing (F(2,23) =11.53,P < 0.001),and the percent time spent within the platform quadrant (F(2,23) =6.29,P < 0.01).In the NORM,the EC and FX DBS groups spent more time with the novel object,although the ANT DBS group did not (F(2,23) =10.03,P < 0.001).In the OF,all of the groups showed a similar total distance moved (F(1.42) =1.14,P =0.29)and relative time spent in the center (F(2,42) =0.56,P =0.58).Conclusions:Our results demonstrated that DBS of the EC and FX facilitated hippocampus-dependent spatial memory more prominently thanANT DBS.In addition,hippocampus-independent recognition memory was enhanced by EC and FX DBS.None of the targets showed side-effects of anxiety or locomotor behaviors.