Chirp-rate-tunable microwave waveforms(CTMWs)with dynamically tunable parameters are of basic interest to many practical applications.Recently,photonic generation of microwave signals has made their bandwidths wider a...Chirp-rate-tunable microwave waveforms(CTMWs)with dynamically tunable parameters are of basic interest to many practical applications.Recently,photonic generation of microwave signals has made their bandwidths wider and more convenient for optical fiber transmission.An all-optical method for generation of multiband CTMWs is proposed and demonstrated on all-fiber architecture,relying on dual temporal cavity solitons with agile repetition rate.In the experiment,the triangular optical chirp microwave waveforms with bandwidth above0.45 GHz(ranging from 1.45 GHz to 1.9 GHz)are obtained,and the chirp rate reaches 0.9 GHz/ms.The reconfigurability is also demonstrated by adjusting the control signal.This all-optical approach provides a technical basis for compact,multi-band reconfigurable microwave photonics transmission and reception systems.展开更多
The influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system is investigated theoretically and experimentally.In the theoretical work,a new theoretical algori...The influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system is investigated theoretically and experimentally.In the theoretical work,a new theoretical algorithm is presented for the coherent combining efficiency,which can be used to quantify the spectral coherence decay induced by optical nonlinearity imbalance between the sub-beams.The spectral information of the sub-beam is obtained by numerically solving the nonlinear Schrödinger equation(NLSE)in this algorithm to ensure an accurate prediction.In the experimental work,the coherent combining of two all-fiber picosecond lasers is achieved,and the influence of imbalanced optical nonlinearity on the combining efficiency is studied,which agrees with the theoretical prediction.This paper reveals the physical mechanism for the influence of optical nonlinearity on the combining efficiency,which is valuable for the coherent combining of ultrashort pulse fiber laser beams.展开更多
基金the National Natural Science Foundation of China(Grant Nos.61675009 and 61325021)the Key Program of Beijing Municipal Natural Science Foundation(Grant No.KZ201910005006)。
文摘Chirp-rate-tunable microwave waveforms(CTMWs)with dynamically tunable parameters are of basic interest to many practical applications.Recently,photonic generation of microwave signals has made their bandwidths wider and more convenient for optical fiber transmission.An all-optical method for generation of multiband CTMWs is proposed and demonstrated on all-fiber architecture,relying on dual temporal cavity solitons with agile repetition rate.In the experiment,the triangular optical chirp microwave waveforms with bandwidth above0.45 GHz(ranging from 1.45 GHz to 1.9 GHz)are obtained,and the chirp rate reaches 0.9 GHz/ms.The reconfigurability is also demonstrated by adjusting the control signal.This all-optical approach provides a technical basis for compact,multi-band reconfigurable microwave photonics transmission and reception systems.
基金upported by the Key Program of Beijing Municipal Natural Science Foundation,China(Grant No.KZ201910005006)the National Natural Science Foundation of China(Grant No.62005004)+1 种基金Natural Science Foundation of Beijing Municipality,China(Grant No.4204091)National Science Foundation for Post-doctor Scientists of China(Grant No.212423)。
文摘The influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system is investigated theoretically and experimentally.In the theoretical work,a new theoretical algorithm is presented for the coherent combining efficiency,which can be used to quantify the spectral coherence decay induced by optical nonlinearity imbalance between the sub-beams.The spectral information of the sub-beam is obtained by numerically solving the nonlinear Schrödinger equation(NLSE)in this algorithm to ensure an accurate prediction.In the experimental work,the coherent combining of two all-fiber picosecond lasers is achieved,and the influence of imbalanced optical nonlinearity on the combining efficiency is studied,which agrees with the theoretical prediction.This paper reveals the physical mechanism for the influence of optical nonlinearity on the combining efficiency,which is valuable for the coherent combining of ultrashort pulse fiber laser beams.