In this study, high-entropy films with the compo- sition of NbTiA1SiNx were prepared by a reactive direct current (DC) magnetron sputtering technique, with different nitrogen flow rates (0, 4 and 8 ml.min^-1). The...In this study, high-entropy films with the compo- sition of NbTiA1SiNx were prepared by a reactive direct current (DC) magnetron sputtering technique, with different nitrogen flow rates (0, 4 and 8 ml.min^-1). The microstructures and properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), nano-indenter and spectrophotometer. All of the as-deposited NbTiA1SiNx films are shown to have an amorphous structure, and the films exhibit high thermal stability up to 700℃. The maximum hardness and modulus values of the films reach 20.5 GPa (4 ml.min-1) and 206.8 GPa (0 ml.min^-l), respectively. The films exhibit high absorption of the solar energy in the wavelength of 0.3-2.5 pm, which indicates that NbTiA1SiNx nitride film is a potential candidate solar selective absorbing coating for high-temperature photo-thermal conversion in the concentrated solar power project.展开更多
基金financially supported by the National Natural Science Foundation of China (No.51471025)
文摘In this study, high-entropy films with the compo- sition of NbTiA1SiNx were prepared by a reactive direct current (DC) magnetron sputtering technique, with different nitrogen flow rates (0, 4 and 8 ml.min^-1). The microstructures and properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), nano-indenter and spectrophotometer. All of the as-deposited NbTiA1SiNx films are shown to have an amorphous structure, and the films exhibit high thermal stability up to 700℃. The maximum hardness and modulus values of the films reach 20.5 GPa (4 ml.min-1) and 206.8 GPa (0 ml.min^-l), respectively. The films exhibit high absorption of the solar energy in the wavelength of 0.3-2.5 pm, which indicates that NbTiA1SiNx nitride film is a potential candidate solar selective absorbing coating for high-temperature photo-thermal conversion in the concentrated solar power project.