Influenced by neo-tectonic movement, the Sanhu area of China's Qaidam Basin formed in the Quaternary in response to migration of its depocentre. A study of core material from the Qijia 1 Well reveals novel Quaternary...Influenced by neo-tectonic movement, the Sanhu area of China's Qaidam Basin formed in the Quaternary in response to migration of its depocentre. A study of core material from the Qijia 1 Well reveals novel Quaternary aqueously deposited aeolian sandstones in the Qigequan Formation of the Sanhu area. Here we report the sedimentary petrology and geochemistry data of these deposits that constrain their depositional history. Evidence for aeolian influence during deposition includes: sorting and roundness, pure quartz sand with single mode grain size distribution and few suspension materials,very fine sand grain size distribution indicating sorting by saltation and suspension transport, dish-shaped and crescentshaped pits in grain surfaces indicating aeolian transport and chemical composition similar to that observed in active or recent dune deposits, namely enrichment in Si O_2, Na_2 O, and Mg O relative to the sand dam sediment in the lakeshore.Identification of these aqueously deposited aeolian sandstones expands the range of sedimentary deposit types found in the Sanhu area and improves understanding of its paleoclimatic history.展开更多
基金funding support from the Qinghai Oilfield Company of the China National Petroleum Corporation
文摘Influenced by neo-tectonic movement, the Sanhu area of China's Qaidam Basin formed in the Quaternary in response to migration of its depocentre. A study of core material from the Qijia 1 Well reveals novel Quaternary aqueously deposited aeolian sandstones in the Qigequan Formation of the Sanhu area. Here we report the sedimentary petrology and geochemistry data of these deposits that constrain their depositional history. Evidence for aeolian influence during deposition includes: sorting and roundness, pure quartz sand with single mode grain size distribution and few suspension materials,very fine sand grain size distribution indicating sorting by saltation and suspension transport, dish-shaped and crescentshaped pits in grain surfaces indicating aeolian transport and chemical composition similar to that observed in active or recent dune deposits, namely enrichment in Si O_2, Na_2 O, and Mg O relative to the sand dam sediment in the lakeshore.Identification of these aqueously deposited aeolian sandstones expands the range of sedimentary deposit types found in the Sanhu area and improves understanding of its paleoclimatic history.