High Mountain Asia(HMA)shows a remarkable warming tendency and divergent trend of regional precipitation with enhanced meteorological extremes.The rapid thawing of the HMA cryosphere may alter the magnitude and freque...High Mountain Asia(HMA)shows a remarkable warming tendency and divergent trend of regional precipitation with enhanced meteorological extremes.The rapid thawing of the HMA cryosphere may alter the magnitude and frequency of nature hazards.We reviewed the influence of climate change on various types of nature hazards in HMA region,including their phenomena,mechanisms and impacts.It reveals that:1)the occurrences of extreme rainfall,heavy snowfall,and drifting snow hazards are escalating;accelerated ice and snow melting have advanced the onset and increased the magnitude of snowmelt floods;2)due to elevating trigger factors,such as glacier debuttressing and the rapid shift of thermal and hydrological regime of bedrock/snow/ice interface or subsurface,the mass flow hazards including bedrock landslide,snow avalanche,ice-rock avalanches or glacier detachment,and debris flow will become more severe;3)increased active-layer detachment and retrogressive thaw slumps slope failures,thaw settlement and thermokarst lake will damage many important engineering structures and infrastructure in permafrost region;4)multi-hazards cascading hazard in HMA,such as the glacial lake outburst flood(GLOF)and avalanche-induced mass flow may greatly enlarge the destructive power of the primary hazard by amplifying its volume,mobility,and impact force;and 5)enhanced slope instability and sediment supply in the highland areas could impose remote catastrophic impacts upon lowland regions,and threat hydropower security and future water shortage.In future,ongoing thawing of HMA will profoundly weaken the multiple-phase material of bedrock,ice,water,and soil,and enhance activities of nature hazards.Compounding and cascading hazards of high magnitude will prevail in HMA.As the glacier runoff overpasses the peak water,low flow or droughts in lowland areas downstream of glacierized mountain regions will became more frequent and severe.Addressing escalating hazards in the HMA region requires tackling scientific challenges,including understanding multiscale evolution and formation mechanism of HMA hazard-prone systems,coupling thermo‒hydro‒mechanical processes in multi-phase flows,predicting catastrophes arising from extreme weather and climate events,and comprehending how highland hazards propagate to lowlands due to climate change.展开更多
Due to the high theoretical capacity and energy density,conversion-type metal fluorides have captured plenty of attentions but still suffer from the inferior kinetic behaviors and serious capacity fading.For addressin...Due to the high theoretical capacity and energy density,conversion-type metal fluorides have captured plenty of attentions but still suffer from the inferior kinetic behaviors and serious capacity fading.For addressing the issues above,the strategies of surface/interface engineering are utilized for the preparation of sphere-like porous FeF3@C materials,where the as-resulted sample displays the uniform particle size(~150 nm in radii)and the ultrathin carbon layers(thickness of~10 nm).Significantly,benefitting from the rich oxygen of precursor,the interfacial chemical bonds Fe-O-C are successfully constructed between carbon matrix and FeF3 materials,accompanying by the enhancements of ions/electrons(e-)conductivity and stability.When used as Li-storage cathodes,the initial lithium-ions storage capacity could reach up to~400mAh·g^(-1) at 0.1 A·g^(-1).Even at 1.0 A·g^(-1),the capacity could be still remained at about 210 mAh·g^(-1),with the retention of 85%after 400 cycles.Assisted by the detailed kinetic behaviors,the considerable electrochemical properties come from the enhanced diffusion-controlled contributions,whilst the segregation of Fe with LiF is effectively alleviated by unique architecture.Moreover,during cycling,solid electrolyte interface film is reversibly formed/decomposed.Thus,this work is expected to offer rational exterior/interfacial designing strategies for metalbased samples.展开更多
基金the National Natural Science Foundation of China(41941017,42101083)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(2019QZKK0906)Science and Technology Research Program of Institute of Mountain Hazards and Environment,Chinese Academy of Sciences(IMHE-ZDRW-02).
文摘High Mountain Asia(HMA)shows a remarkable warming tendency and divergent trend of regional precipitation with enhanced meteorological extremes.The rapid thawing of the HMA cryosphere may alter the magnitude and frequency of nature hazards.We reviewed the influence of climate change on various types of nature hazards in HMA region,including their phenomena,mechanisms and impacts.It reveals that:1)the occurrences of extreme rainfall,heavy snowfall,and drifting snow hazards are escalating;accelerated ice and snow melting have advanced the onset and increased the magnitude of snowmelt floods;2)due to elevating trigger factors,such as glacier debuttressing and the rapid shift of thermal and hydrological regime of bedrock/snow/ice interface or subsurface,the mass flow hazards including bedrock landslide,snow avalanche,ice-rock avalanches or glacier detachment,and debris flow will become more severe;3)increased active-layer detachment and retrogressive thaw slumps slope failures,thaw settlement and thermokarst lake will damage many important engineering structures and infrastructure in permafrost region;4)multi-hazards cascading hazard in HMA,such as the glacial lake outburst flood(GLOF)and avalanche-induced mass flow may greatly enlarge the destructive power of the primary hazard by amplifying its volume,mobility,and impact force;and 5)enhanced slope instability and sediment supply in the highland areas could impose remote catastrophic impacts upon lowland regions,and threat hydropower security and future water shortage.In future,ongoing thawing of HMA will profoundly weaken the multiple-phase material of bedrock,ice,water,and soil,and enhance activities of nature hazards.Compounding and cascading hazards of high magnitude will prevail in HMA.As the glacier runoff overpasses the peak water,low flow or droughts in lowland areas downstream of glacierized mountain regions will became more frequent and severe.Addressing escalating hazards in the HMA region requires tackling scientific challenges,including understanding multiscale evolution and formation mechanism of HMA hazard-prone systems,coupling thermo‒hydro‒mechanical processes in multi-phase flows,predicting catastrophes arising from extreme weather and climate events,and comprehending how highland hazards propagate to lowlands due to climate change.
基金financially supported by the National Natural Science Foundation of China(Nos.52004334,52003230,91962223 and 21473258)the Science and TechnologyInnovation Program of Hunan Province(No.2021RC2091)+3 种基金the China Postdoctoral Science Foundation(No.2021M692703)Natural Science Foundation of Hunan Province(No.2021JJ20073)National Key Research and Development Program of China(Nos.2018YFC1901601 and 2019YFC1907801)Collaborative Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2017-13)。
文摘Due to the high theoretical capacity and energy density,conversion-type metal fluorides have captured plenty of attentions but still suffer from the inferior kinetic behaviors and serious capacity fading.For addressing the issues above,the strategies of surface/interface engineering are utilized for the preparation of sphere-like porous FeF3@C materials,where the as-resulted sample displays the uniform particle size(~150 nm in radii)and the ultrathin carbon layers(thickness of~10 nm).Significantly,benefitting from the rich oxygen of precursor,the interfacial chemical bonds Fe-O-C are successfully constructed between carbon matrix and FeF3 materials,accompanying by the enhancements of ions/electrons(e-)conductivity and stability.When used as Li-storage cathodes,the initial lithium-ions storage capacity could reach up to~400mAh·g^(-1) at 0.1 A·g^(-1).Even at 1.0 A·g^(-1),the capacity could be still remained at about 210 mAh·g^(-1),with the retention of 85%after 400 cycles.Assisted by the detailed kinetic behaviors,the considerable electrochemical properties come from the enhanced diffusion-controlled contributions,whilst the segregation of Fe with LiF is effectively alleviated by unique architecture.Moreover,during cycling,solid electrolyte interface film is reversibly formed/decomposed.Thus,this work is expected to offer rational exterior/interfacial designing strategies for metalbased samples.