期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Disaster effects of climate change in High Mountain Asia:State of art and scientific challenges Disaster effects of climate change in High Mountain Asia:State of art and scientific challenges 被引量:1
1
作者 Hao WANG Bin-Bin WANG +13 位作者 Peng CUI Yao-Ming MA Yan WANG Jian-Sheng HAO Yu WANG Ya-Mei LI Li-Jun SUN Jiao WANG Guo-Tao ZHANG Wei-Mo LI Yu LEI wen-qing zhao Jin-Bo TANG Chao-Yue LI 《Advances in Climate Change Research》 SCIE CSCD 2024年第3期367-389,共23页
High Mountain Asia(HMA)shows a remarkable warming tendency and divergent trend of regional precipitation with enhanced meteorological extremes.The rapid thawing of the HMA cryosphere may alter the magnitude and freque... High Mountain Asia(HMA)shows a remarkable warming tendency and divergent trend of regional precipitation with enhanced meteorological extremes.The rapid thawing of the HMA cryosphere may alter the magnitude and frequency of nature hazards.We reviewed the influence of climate change on various types of nature hazards in HMA region,including their phenomena,mechanisms and impacts.It reveals that:1)the occurrences of extreme rainfall,heavy snowfall,and drifting snow hazards are escalating;accelerated ice and snow melting have advanced the onset and increased the magnitude of snowmelt floods;2)due to elevating trigger factors,such as glacier debuttressing and the rapid shift of thermal and hydrological regime of bedrock/snow/ice interface or subsurface,the mass flow hazards including bedrock landslide,snow avalanche,ice-rock avalanches or glacier detachment,and debris flow will become more severe;3)increased active-layer detachment and retrogressive thaw slumps slope failures,thaw settlement and thermokarst lake will damage many important engineering structures and infrastructure in permafrost region;4)multi-hazards cascading hazard in HMA,such as the glacial lake outburst flood(GLOF)and avalanche-induced mass flow may greatly enlarge the destructive power of the primary hazard by amplifying its volume,mobility,and impact force;and 5)enhanced slope instability and sediment supply in the highland areas could impose remote catastrophic impacts upon lowland regions,and threat hydropower security and future water shortage.In future,ongoing thawing of HMA will profoundly weaken the multiple-phase material of bedrock,ice,water,and soil,and enhance activities of nature hazards.Compounding and cascading hazards of high magnitude will prevail in HMA.As the glacier runoff overpasses the peak water,low flow or droughts in lowland areas downstream of glacierized mountain regions will became more frequent and severe.Addressing escalating hazards in the HMA region requires tackling scientific challenges,including understanding multiscale evolution and formation mechanism of HMA hazard-prone systems,coupling thermo‒hydro‒mechanical processes in multi-phase flows,predicting catastrophes arising from extreme weather and climate events,and comprehending how highland hazards propagate to lowlands due to climate change. 展开更多
关键词 High Mountain Asia Climate change Cryosphere degradation Nature hazards Disaster risk
原文传递
Engineering sphere-like porous FeF3@C cathode with rational interfacial designing towards high-power batteries
2
作者 Ming-Jun Jing Jun-Chang Liu +5 位作者 Shao-Hui Yuan wen-qing zhao Min Liu Yan-Song Bai Peng Ge Tian-Jing Wu 《Rare Metals》 SCIE EI CAS CSCD 2023年第3期954-970,共17页
Due to the high theoretical capacity and energy density,conversion-type metal fluorides have captured plenty of attentions but still suffer from the inferior kinetic behaviors and serious capacity fading.For addressin... Due to the high theoretical capacity and energy density,conversion-type metal fluorides have captured plenty of attentions but still suffer from the inferior kinetic behaviors and serious capacity fading.For addressing the issues above,the strategies of surface/interface engineering are utilized for the preparation of sphere-like porous FeF3@C materials,where the as-resulted sample displays the uniform particle size(~150 nm in radii)and the ultrathin carbon layers(thickness of~10 nm).Significantly,benefitting from the rich oxygen of precursor,the interfacial chemical bonds Fe-O-C are successfully constructed between carbon matrix and FeF3 materials,accompanying by the enhancements of ions/electrons(e-)conductivity and stability.When used as Li-storage cathodes,the initial lithium-ions storage capacity could reach up to~400mAh·g^(-1) at 0.1 A·g^(-1).Even at 1.0 A·g^(-1),the capacity could be still remained at about 210 mAh·g^(-1),with the retention of 85%after 400 cycles.Assisted by the detailed kinetic behaviors,the considerable electrochemical properties come from the enhanced diffusion-controlled contributions,whilst the segregation of Fe with LiF is effectively alleviated by unique architecture.Moreover,during cycling,solid electrolyte interface film is reversibly formed/decomposed.Thus,this work is expected to offer rational exterior/interfacial designing strategies for metalbased samples. 展开更多
关键词 Conversion-type Iron fluoride ELECTROCHEMISTRY Kinetic behaviors Secondary batteries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部