Global warming in tandem with surface albedo reduction caused by black carbon(BC)deposition on glaciers accelerated glacier melting;however,their respective contributions remain unclear.Glaciers in the Qilian Mountain...Global warming in tandem with surface albedo reduction caused by black carbon(BC)deposition on glaciers accelerated glacier melting;however,their respective contributions remain unclear.Glaciers in the Qilian Mountains are crucial for the development of oases in the Hexi Corridor;however,their area has decreased by more than 20%over the past half-century.Thus,this study developed a dynamic deposition model for light-absorbing particles(LAPs),coupled with a surface energy and mass balance model.We comprehensively assessed the effects of BC and warming on the melting of a typical glacier in the Qilian Mountains based on the coupled model.BC on the glacier surface caused 13.1%of annual glacier-wide melting,of which directly deposited atmospheric BC reduced the surface albedo by 0.02 and accounted for 9.1%of glacier melting.The air temperature during 2000-2010 has increased by 1.5°C relative to that during the 1950s,accounting for 51.9%of current glacier melting.Meanwhile,BC emission have increased by 4.6 times compared to those of the early Industrial Revolution recorded in an ice core,accounting conservatively for 6.3%of current glacier melting.Mitigating BC emissions has a limited influence on current glacier melting;however,in the long-term,mitigation should exert a noteworthy impact on glacier melting through the self-purification of glaciers.展开更多
基金This study was supported by the National Key Research and Development Project(2022YFF0711704)Science Fund for Creative Research Groups of Gansu Province(23JRRA567)+2 种基金National Natural Science Foundation of China(42101139,42071018)West Light Foundation of The Chinese Academy of Sciences(xbzg-zdsys-202306)Taishan Scholars Program of Shandong Province(tsqn202312158).
文摘Global warming in tandem with surface albedo reduction caused by black carbon(BC)deposition on glaciers accelerated glacier melting;however,their respective contributions remain unclear.Glaciers in the Qilian Mountains are crucial for the development of oases in the Hexi Corridor;however,their area has decreased by more than 20%over the past half-century.Thus,this study developed a dynamic deposition model for light-absorbing particles(LAPs),coupled with a surface energy and mass balance model.We comprehensively assessed the effects of BC and warming on the melting of a typical glacier in the Qilian Mountains based on the coupled model.BC on the glacier surface caused 13.1%of annual glacier-wide melting,of which directly deposited atmospheric BC reduced the surface albedo by 0.02 and accounted for 9.1%of glacier melting.The air temperature during 2000-2010 has increased by 1.5°C relative to that during the 1950s,accounting for 51.9%of current glacier melting.Meanwhile,BC emission have increased by 4.6 times compared to those of the early Industrial Revolution recorded in an ice core,accounting conservatively for 6.3%of current glacier melting.Mitigating BC emissions has a limited influence on current glacier melting;however,in the long-term,mitigation should exert a noteworthy impact on glacier melting through the self-purification of glaciers.