An RFID (Radio-Frequency IDentification) system provides the mechanism to identify tags to readers and then to execute specific RFID-enabled applications. In those applications, secure protocols using lightweight cryp...An RFID (Radio-Frequency IDentification) system provides the mechanism to identify tags to readers and then to execute specific RFID-enabled applications. In those applications, secure protocols using lightweight cryptography need to be developed and the privacy of tags must be ensured. In 2010, Batina et al. proposed a privacy-preserving grouping proof protocol for RFID based on ECC (Elliptic Curve Cryptography) in public-key cryptosystem. In the next year, Lv et al. had shown that Batina et al.’s protocol was insecure against the tracking attack such that the privacy of tags did not be preserved properly. Then they proposed a revised protocol based on Batina et al.’s work. Their revised protocol was claimed to have all security properties and resisted tracking attack. But in this paper, we prove that Lv et al.’s protocol cannot work properly. Then we propose a new version protocol with some nonce to satisfy the functions of Batina et al.’s privacy-preserving grouping proof protocol. Further we try the tracing attack made by Lv et al. on our protocol and prove our protocol can resist this attack to recover the untraceability.展开更多
文摘An RFID (Radio-Frequency IDentification) system provides the mechanism to identify tags to readers and then to execute specific RFID-enabled applications. In those applications, secure protocols using lightweight cryptography need to be developed and the privacy of tags must be ensured. In 2010, Batina et al. proposed a privacy-preserving grouping proof protocol for RFID based on ECC (Elliptic Curve Cryptography) in public-key cryptosystem. In the next year, Lv et al. had shown that Batina et al.’s protocol was insecure against the tracking attack such that the privacy of tags did not be preserved properly. Then they proposed a revised protocol based on Batina et al.’s work. Their revised protocol was claimed to have all security properties and resisted tracking attack. But in this paper, we prove that Lv et al.’s protocol cannot work properly. Then we propose a new version protocol with some nonce to satisfy the functions of Batina et al.’s privacy-preserving grouping proof protocol. Further we try the tracing attack made by Lv et al. on our protocol and prove our protocol can resist this attack to recover the untraceability.