We investigate the topological phase transition and the enhanced topological effect in a cavity optomechanical system with periodical modulation.By calculating the steady-state equations of the system,the steady-state...We investigate the topological phase transition and the enhanced topological effect in a cavity optomechanical system with periodical modulation.By calculating the steady-state equations of the system,the steady-state conditions of cavity fields and the restricted conditions of effective optomechanical couplings are demonstrated.It is found that the cavity optomechanical system can be modulated to different topological Su–Schrieffer–Heeger(SSH)phases via designing the optomechanical couplings legitimately.Meanwhile,combining the effective optomechanical couplings and the probability distributions of gap states,we reveal the topological phase transition between trivial SSH phase and nontrivial SSH phase via adjusting the decay rates of cavity fields.Moreover,we find that the enhanced topological effect of gap states can be achieved by enlarging the size of system and adjusting the decay rates of cavity fields.展开更多
基金the National Natural Science Foundation of China(Grant Nos.61822114,12074330,and 62071412)。
文摘We investigate the topological phase transition and the enhanced topological effect in a cavity optomechanical system with periodical modulation.By calculating the steady-state equations of the system,the steady-state conditions of cavity fields and the restricted conditions of effective optomechanical couplings are demonstrated.It is found that the cavity optomechanical system can be modulated to different topological Su–Schrieffer–Heeger(SSH)phases via designing the optomechanical couplings legitimately.Meanwhile,combining the effective optomechanical couplings and the probability distributions of gap states,we reveal the topological phase transition between trivial SSH phase and nontrivial SSH phase via adjusting the decay rates of cavity fields.Moreover,we find that the enhanced topological effect of gap states can be achieved by enlarging the size of system and adjusting the decay rates of cavity fields.