We focus on two new 21) materials, i.e., monolayer and bilayer silicon phosphides (Sil P1). Based on the elastic- scattering Green's function, the electronic-transport properties of two-dimensional monolayer and b...We focus on two new 21) materials, i.e., monolayer and bilayer silicon phosphides (Sil P1). Based on the elastic- scattering Green's function, the electronic-transport properties of two-dimensional monolayer and bilayer Au- Si1P1-Au molecular junctions are studied. It is found that their bandgaps are narrow (0.16eV for a monolayer molecular junction and 0.26 e V for a bilayer molecular junction). Moreover, the calculated current-voltage char- acteristics indicate that the monolayer molecular junction provides constant output current (20 hA) over a wide voltage range, and the bilayer molecular junction provides higher current (42 hA).展开更多
We investigate the electronic-transport properties of two-dimensional monolayer films from Au-P-Au molecular junction to Au-Si-Au molecular junction using elastic scattering Green's function theory. In the process of...We investigate the electronic-transport properties of two-dimensional monolayer films from Au-P-Au molecular junction to Au-Si-Au molecular junction using elastic scattering Green's function theory. In the process of replacing the P atoms with Si atoms every other line from the middle of monolayer blue phosphorus molecular structure, the substitution of Si atoms changes the properties of Au-P-Au molecular junction significantly. Interestingly, the current value has a symmetric change as a parabolic curve with the peak appearing in Au-Si_1P_1-Au molecular junction, which provides the most stable current of 15.00 nA in a wide voltage range of 0.70-2.70 V.Moreover, the current-voltage characteristics of the structures indicate that the steps tend to disappear revealing the property similar to metal when the Si atoms dominate the molecular junction.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11374033
文摘We focus on two new 21) materials, i.e., monolayer and bilayer silicon phosphides (Sil P1). Based on the elastic- scattering Green's function, the electronic-transport properties of two-dimensional monolayer and bilayer Au- Si1P1-Au molecular junctions are studied. It is found that their bandgaps are narrow (0.16eV for a monolayer molecular junction and 0.26 e V for a bilayer molecular junction). Moreover, the calculated current-voltage char- acteristics indicate that the monolayer molecular junction provides constant output current (20 hA) over a wide voltage range, and the bilayer molecular junction provides higher current (42 hA).
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374033,11774030,51735001 and 61775016the Fundamental Research Funds for the Central Universities under Grant No 2017CX10007
文摘We investigate the electronic-transport properties of two-dimensional monolayer films from Au-P-Au molecular junction to Au-Si-Au molecular junction using elastic scattering Green's function theory. In the process of replacing the P atoms with Si atoms every other line from the middle of monolayer blue phosphorus molecular structure, the substitution of Si atoms changes the properties of Au-P-Au molecular junction significantly. Interestingly, the current value has a symmetric change as a parabolic curve with the peak appearing in Au-Si_1P_1-Au molecular junction, which provides the most stable current of 15.00 nA in a wide voltage range of 0.70-2.70 V.Moreover, the current-voltage characteristics of the structures indicate that the steps tend to disappear revealing the property similar to metal when the Si atoms dominate the molecular junction.