Flow?induced vibration plays a positive role on heat transfer enhancement. Meanwhile, it is also a negative factor for fatigue strength. Satisfying the fatigue strength is the primary prerequisite for heat transfer en...Flow?induced vibration plays a positive role on heat transfer enhancement. Meanwhile, it is also a negative factor for fatigue strength. Satisfying the fatigue strength is the primary prerequisite for heat transfer enhancement. This paper numerically studied the flow?induced vibration of planar elastic tube bundle based on a two?way fluid–structure interaction(FSI) calculation. The numerical calculation involved the unsteady, three?dimensional incompressible governing equations solved with finite volume approach and the dynamic balance equation of planar elastic tube bundle solved with finite element method combined with dynamic mesh scheme. The numerical approach was verified by comparing with the published experimental results. Then the vibration trajectory, deformation and stress contour of planar elastic tube bundle were all studied. Results show that the combined movement of planar elastic tube bundle represents the agitation from inside to outside. The vibration of out?of?plane is the main vibration form with the typically sinusoidal behavior because the magnitude of displacement along the out?of?plane direction is the 100 times than the value of in?plane direction. The dangerous point locates in the innermost tube where the equivalent stress can be utilized to study the multiaxial fatigue of planar elastic tube bundle due to the alternating stress concentration. In the velocity range of 0.2-3 m/s, it is inferred that the vibration amplitude plays a role on the stress response and the stress amplitude is susceptible to the fluid velocity. This research paves a way for studying the fatigue strength of planar elastic tube bundle by flow?induced vibration.展开更多
The responses of the flow-induced vibration of an elastic tube bundle subjected to the shell-side cross flow are investigated in this paper. The weak coupling method and the fluid solid interface are used to solve the...The responses of the flow-induced vibration of an elastic tube bundle subjected to the shell-side cross flow are investigated in this paper. The weak coupling method and the fluid solid interface are used to solve the fluid-structure interaction problem with consideration of the geometry and physical natures. The effects of the shell-side fluid flow velocity and the structural parameters on the flow-induced vibration are discussed. Numerical results demonstrate that the vibration frequency and amplitude at the monitor points increase with the increase of the shell-side water inlet velocity in all directions. The wall thickness and the external diameter of the elastic tube bundle have significant effects on the responses of the flow-induced vibration. The structural parameters affect the vibration frequency and amplitude, and the vibration equilibrium position in the water flow direction. The vibration frequency decreases with the increase of the tube external diameter. In addition, the vibration in the water flow direction has a lower equilibrium position when the elastic tube bundle has a larger wall thickness or smaller external diameter.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51475268)National Basic Research Program of China(973 Program,Grant No.2007CB206903)
文摘Flow?induced vibration plays a positive role on heat transfer enhancement. Meanwhile, it is also a negative factor for fatigue strength. Satisfying the fatigue strength is the primary prerequisite for heat transfer enhancement. This paper numerically studied the flow?induced vibration of planar elastic tube bundle based on a two?way fluid–structure interaction(FSI) calculation. The numerical calculation involved the unsteady, three?dimensional incompressible governing equations solved with finite volume approach and the dynamic balance equation of planar elastic tube bundle solved with finite element method combined with dynamic mesh scheme. The numerical approach was verified by comparing with the published experimental results. Then the vibration trajectory, deformation and stress contour of planar elastic tube bundle were all studied. Results show that the combined movement of planar elastic tube bundle represents the agitation from inside to outside. The vibration of out?of?plane is the main vibration form with the typically sinusoidal behavior because the magnitude of displacement along the out?of?plane direction is the 100 times than the value of in?plane direction. The dangerous point locates in the innermost tube where the equivalent stress can be utilized to study the multiaxial fatigue of planar elastic tube bundle due to the alternating stress concentration. In the velocity range of 0.2-3 m/s, it is inferred that the vibration amplitude plays a role on the stress response and the stress amplitude is susceptible to the fluid velocity. This research paves a way for studying the fatigue strength of planar elastic tube bundle by flow?induced vibration.
基金Project supported by the National Natural Science Foundation of China(Grant No.51475268)
文摘The responses of the flow-induced vibration of an elastic tube bundle subjected to the shell-side cross flow are investigated in this paper. The weak coupling method and the fluid solid interface are used to solve the fluid-structure interaction problem with consideration of the geometry and physical natures. The effects of the shell-side fluid flow velocity and the structural parameters on the flow-induced vibration are discussed. Numerical results demonstrate that the vibration frequency and amplitude at the monitor points increase with the increase of the shell-side water inlet velocity in all directions. The wall thickness and the external diameter of the elastic tube bundle have significant effects on the responses of the flow-induced vibration. The structural parameters affect the vibration frequency and amplitude, and the vibration equilibrium position in the water flow direction. The vibration frequency decreases with the increase of the tube external diameter. In addition, the vibration in the water flow direction has a lower equilibrium position when the elastic tube bundle has a larger wall thickness or smaller external diameter.