The effects of strain rate on the mechanical properties,microstructure and texture of Al-Mg-Si-Cu alloy were investigated through tensile test,microstructure and texture characterization.The results show that strain r...The effects of strain rate on the mechanical properties,microstructure and texture of Al-Mg-Si-Cu alloy were investigated through tensile test,microstructure and texture characterization.The results show that strain rate has some influences on the mechanical properties and microstructure,but a slight influence on the texture.Overall,yield strength,ultimate tensile strength and elongation increase first,then remain unchanged,and finally increase with increasing strain rate.Independent of strain rate,microstructure in the vicinities of the fracture regions of all the specimens is composed of the slightly elongated grains.However,some differences in misorientation angle distributions can be observed.As strain rate increases,the low angle grain boundaries(LAGBs)increase first,and then decrease.Textures in the vicinities of the fracture regions are almost identical with increasing strain rate.展开更多
The relationship among heating rate, mechanical properties, microstructure and texture of Al-Mg-Si-Cu alloy during solution treatment was investigated through tensile test, scanning electron microscope, X-ray diffract...The relationship among heating rate, mechanical properties, microstructure and texture of Al-Mg-Si-Cu alloy during solution treatment was investigated through tensile test, scanning electron microscope, X-ray diffractometer and EBSD technology. The experimental results reveal that there is a non-monotonic relationship among solution heating rate, mechanical properties, microstructure and texture. As the solution heating rate increases, the strength variations are dependent on the tensile direction;work hardening exponent n decreases first, and then increases;plastic strain ratio r increases first, and then decreases, and finally increases. The final microstructure and texture are also affected by heating rate. As heating rate increases, the microstructure transforms from elongated grain structure to equiaxed grain structure, and the average grain size decreases first, and then increases, and decreases finally. Although the texture components including CubeND{001}<310> and P{011}<122> orientations almost have no change with the increase of heating rate, the texture intensity and volume fraction decrease first, and then increase, and finally decrease. Both microstructure and texture evolutions are weakly affected by heating rate. Improving heating rate is not always favorable for the development of fine equiaxed grain structure, weak texture and high average r value, which may be related to the recrystallization behavior.展开更多
To further improve the comprehensive properties of 42CrMo/Q235 laminated shafts produced by cross wedge rolling.theheat treatment of the shafts was studied.Tensile and bending tests were carried out to compare the cha...To further improve the comprehensive properties of 42CrMo/Q235 laminated shafts produced by cross wedge rolling.theheat treatment of the shafts was studied.Tensile and bending tests were carried out to compare the changes in mechanicalproperties before and after heat treatment.The results showed that the interfacial bonding strength increased most aftertempering at 350℃for 45 min.The microstructure of the interface was observed using a digital microscope.The resultsshowed that the dispersed oxides on the interface were basically eliminated by using the scheme of tempering at 350 cand holding for 45 min.The reasons for the change in mechanical properties were explained from the point of theinterfacial microstructure.Scanning electron microscopy was used to analyze the micro-morphology of the tensile fracture.lt was observed that after tempering at 350℃and holding for 45 min,the dimple holes became larger and deeper,and thestructure of fracture became more uniform and stable.From the point of the tensile fracture morphology.the reasons for thechange in mcchanical propcrties wcrc explained as well.展开更多
Through rolling experiments and interfacial tensile strength tests of cross-wedge rolled laminated shafts of 42CrMo/Q235 composites, the influence of process parameters, including forming angle, spreading angle, area ...Through rolling experiments and interfacial tensile strength tests of cross-wedge rolled laminated shafts of 42CrMo/Q235 composites, the influence of process parameters, including forming angle, spreading angle, area reduction, rolling temperature and core material diameter on the interfacial shear strength was analyzed. The results show that the sequence of process parameters in order of greatest influence on interfacial tensile strength was rolling temperature, area reduction, core material diameter, forming angle and spreading angle. At the interface of the combined materials, tensile strength decreased as forming angle and spreading angle increased, whereas the tensile strength first increased and then decreased as area reduction, rolling temperature and core material diameter increased.展开更多
基金Project(TZ2018001)supported by the Science Challenge Project,ChinaProject(LQ17E010001)supported by the Zhejiang Provincial Natural Science Foundation,China+2 种基金Project(2019-Z02)supported by the State Key Lab of Advanced Metals and Materials,ChinaProject(2018A610174)supported by the Ningbo Natural Science Foundation,ChinaProject supported by K.C.Wong Magna Fund from Ningbo University,China.
文摘The effects of strain rate on the mechanical properties,microstructure and texture of Al-Mg-Si-Cu alloy were investigated through tensile test,microstructure and texture characterization.The results show that strain rate has some influences on the mechanical properties and microstructure,but a slight influence on the texture.Overall,yield strength,ultimate tensile strength and elongation increase first,then remain unchanged,and finally increase with increasing strain rate.Independent of strain rate,microstructure in the vicinities of the fracture regions of all the specimens is composed of the slightly elongated grains.However,some differences in misorientation angle distributions can be observed.As strain rate increases,the low angle grain boundaries(LAGBs)increase first,and then decrease.Textures in the vicinities of the fracture regions are almost identical with increasing strain rate.
基金The authors are grateful for the financial supports from the Science Challenge Project(TZ2018001)the State Key Laboratory of Advanced Metals and Materials University of Science and Technology Beijing,China(2019-Z02)+3 种基金the National Natural Science Foundation of China(52075272)the Key Laboratory of Impact and Safety Engineering,Ministry of Education,Ningbo University,China(CJ201912)the Ningbo Natural Science Foundation,China(2018A610174)the K.C.Wong Magna Fund from Ningbo University,China.
文摘The relationship among heating rate, mechanical properties, microstructure and texture of Al-Mg-Si-Cu alloy during solution treatment was investigated through tensile test, scanning electron microscope, X-ray diffractometer and EBSD technology. The experimental results reveal that there is a non-monotonic relationship among solution heating rate, mechanical properties, microstructure and texture. As the solution heating rate increases, the strength variations are dependent on the tensile direction;work hardening exponent n decreases first, and then increases;plastic strain ratio r increases first, and then decreases, and finally increases. The final microstructure and texture are also affected by heating rate. As heating rate increases, the microstructure transforms from elongated grain structure to equiaxed grain structure, and the average grain size decreases first, and then increases, and decreases finally. Although the texture components including CubeND{001}<310> and P{011}<122> orientations almost have no change with the increase of heating rate, the texture intensity and volume fraction decrease first, and then increase, and finally decrease. Both microstructure and texture evolutions are weakly affected by heating rate. Improving heating rate is not always favorable for the development of fine equiaxed grain structure, weak texture and high average r value, which may be related to the recrystallization behavior.
基金supported by the Fundamental Research Funds for the Provincial Universities of Zhejiang(No.SJLZ2021002)the Natural Science Foundation of Zhejiang Province(Grant No.LY18EO50006)+2 种基金the Natural Science Foundation of Ningbo City(Grant No.2017A610088)the Ningbo Science and Technology Innovation 2025 Major Project(2018B10004,2019B10100)National Natural Science Foundation of China(Grant No.51405248)。
文摘To further improve the comprehensive properties of 42CrMo/Q235 laminated shafts produced by cross wedge rolling.theheat treatment of the shafts was studied.Tensile and bending tests were carried out to compare the changes in mechanicalproperties before and after heat treatment.The results showed that the interfacial bonding strength increased most aftertempering at 350℃for 45 min.The microstructure of the interface was observed using a digital microscope.The resultsshowed that the dispersed oxides on the interface were basically eliminated by using the scheme of tempering at 350 cand holding for 45 min.The reasons for the change in mechanical properties were explained from the point of theinterfacial microstructure.Scanning electron microscopy was used to analyze the micro-morphology of the tensile fracture.lt was observed that after tempering at 350℃and holding for 45 min,the dimple holes became larger and deeper,and thestructure of fracture became more uniform and stable.From the point of the tensile fracture morphology.the reasons for thechange in mcchanical propcrties wcrc explained as well.
基金This project was supported by the National Natural Science Foundation of China (Grant Nos. 51405248 and 51475247), the Key Research and Development Program of Shandong Province (Grant No. 2016ZDJQ0604), the Natural Science Foundation of Zhejiang Province (Grant No. LY18E050006), Natural Science Foundation of Ningbo City (Grant No. 2017A610088) and the K.C. Wong Magna Fund in Ningbo University.
文摘Through rolling experiments and interfacial tensile strength tests of cross-wedge rolled laminated shafts of 42CrMo/Q235 composites, the influence of process parameters, including forming angle, spreading angle, area reduction, rolling temperature and core material diameter on the interfacial shear strength was analyzed. The results show that the sequence of process parameters in order of greatest influence on interfacial tensile strength was rolling temperature, area reduction, core material diameter, forming angle and spreading angle. At the interface of the combined materials, tensile strength decreased as forming angle and spreading angle increased, whereas the tensile strength first increased and then decreased as area reduction, rolling temperature and core material diameter increased.