期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Phenotypic changes of Schwann cells on the proximal stump of injured peripheral nerve during repair using small gap conduit tube
1
作者 Shi-jun Zhang wen-liang wu +2 位作者 Kai-yun Yang Yun-zhen Chen Hai-chun Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第9期1538-1543,共6页
Dedifferentiation of Schwann cells is an important feature of the response to peripheral nerve injury and specific negative myelination reg- ulators are considered to have a major role in this process. However, most e... Dedifferentiation of Schwann cells is an important feature of the response to peripheral nerve injury and specific negative myelination reg- ulators are considered to have a major role in this process. However, most experiments have focused on the distal nerve stump, where the Notch signaling pathway is strongly associated with Schwann cell dedifferentiation and repair of the nerve. We observed the phenotypic changes of Schwann cells and changes of active Notch signaling on the proximal stump during peripheral nerve repair using small gap conduit tubulization. Eighty rats, with right sciatic nerve section of 4 mm, were randomly assigned to conduit bridging group and control group (epineurium suture). Glial fibrillary acidic protein expression, in myelinating Schwann cells on the proximal stump, began to up-reg- ulate at 1 day after injury and was still evident at 5 days. Compared with the control group, Notchl mRNA was expressed at a higher level in the conduit bridging group during the first week on the proximal stump. Hesl mRNA levels in the conduit bridging group significantly increased compared with the control group at 3, 5, 7 and 14 days post-surgery. The change of the Notch intracellular domain shared a simi- lar trend as Hesl mRNA expression. Our results confirmed that phenotypic changes of Schwann cells occurred in the proximal stump. The differences in these changes between the conduit tubulization and epineurium suture groups correlate with changes in Notch signaling. This suggests that active Notch signaling might be a key mechanism during the early stage of neural regeneration in the proximal nerve stump. 展开更多
关键词 nerve regeneration Schwann cells nerve injury small gap conduit therapy CHITIN peripheral nerve injury Notch signaling Notch 1 HES1 glial fibrillary acidic protein S100 neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部