To provide theoretical guidance for performance stability control of low-reactive mold fluxes,the effects of BaO and MgO on the structure and properties of aluminate slag with various CaO/Al_(2)0_(3)(C/A)ratios were i...To provide theoretical guidance for performance stability control of low-reactive mold fluxes,the effects of BaO and MgO on the structure and properties of aluminate slag with various CaO/Al_(2)0_(3)(C/A)ratios were investigated using the Fourier transform infrared spectrometer,Raman spectroscope,hemispherical melting point instrument,rotational viscometer and X-ray diffractometer.The results indicated that with BaO and MgO addition,the structure polymerization was first weakened and then enhanced at C/A of 1.1,and the transition contents corresponded to 8 wt.%BaO and 2 wt.%MgO,respectively,while the structure polymerization decreased continuously at C/A of 1.3.Since the viscosity change was well consistent with the structure evolution,the polymerization degree played a more prominent role in the slag viscosity than superheat degree when the melting temperature difference was within 40℃.The break temperature decreased initially and then increased with augment of BaO and MgO at C/A of 1.1,while it manifested a decrease trend with BaO addition,and it decreased obviously but then turned to increase with MgO increment at C/A of 1.3.The crystallization phase and crystallization ratio kept stable with BaO increment,while the crystallization ratio rose greatly with MgO promoting LiAlO_(2)precipitation at C/A of 1.1.The crystal types of all experimental slags were mainly Ca_(12)Al_(14)O_(33)and CaF_(2)at C/A of 1.3,and the precipitation of crystalline phase BaAl2O4 demonstrated a rising trend,while that of Ca_(12)Al_(14)O_(33)gradually declined with BaO augment.展开更多
基金The authors would like to deeply appreciate the fund support from the Natural Science Foundation of Anhui Provincial Education Department(KJ2021A0358)the National Natural Science Foundation of China(51804004)。
文摘To provide theoretical guidance for performance stability control of low-reactive mold fluxes,the effects of BaO and MgO on the structure and properties of aluminate slag with various CaO/Al_(2)0_(3)(C/A)ratios were investigated using the Fourier transform infrared spectrometer,Raman spectroscope,hemispherical melting point instrument,rotational viscometer and X-ray diffractometer.The results indicated that with BaO and MgO addition,the structure polymerization was first weakened and then enhanced at C/A of 1.1,and the transition contents corresponded to 8 wt.%BaO and 2 wt.%MgO,respectively,while the structure polymerization decreased continuously at C/A of 1.3.Since the viscosity change was well consistent with the structure evolution,the polymerization degree played a more prominent role in the slag viscosity than superheat degree when the melting temperature difference was within 40℃.The break temperature decreased initially and then increased with augment of BaO and MgO at C/A of 1.1,while it manifested a decrease trend with BaO addition,and it decreased obviously but then turned to increase with MgO increment at C/A of 1.3.The crystallization phase and crystallization ratio kept stable with BaO increment,while the crystallization ratio rose greatly with MgO promoting LiAlO_(2)precipitation at C/A of 1.1.The crystal types of all experimental slags were mainly Ca_(12)Al_(14)O_(33)and CaF_(2)at C/A of 1.3,and the precipitation of crystalline phase BaAl2O4 demonstrated a rising trend,while that of Ca_(12)Al_(14)O_(33)gradually declined with BaO augment.