精准医学的发展正在改变癌症的诊疗方式,分子靶点的不断探索及新的药物和疗效数据涌现,为癌症患者带来生机。肺大细胞神经内分泌癌(large cell neuroendocrine carcinoma of the lung,LCNEC)是相对罕见的肿瘤,也在精准医学的蓬勃发展中...精准医学的发展正在改变癌症的诊疗方式,分子靶点的不断探索及新的药物和疗效数据涌现,为癌症患者带来生机。肺大细胞神经内分泌癌(large cell neuroendocrine carcinoma of the lung,LCNEC)是相对罕见的肿瘤,也在精准医学的蓬勃发展中迎来曙光。近年来,基因组和转录组分析揭示了LCNEC的不同亚型,为个性化的治疗带来希望。在靶向治疗方面,已有关于LCNEC携带EGFR、ALK、BRAF V600E突变位点的患者从靶向治疗中获益的报道,PI3K-AKT-MTOR通路、BDNF/TrkB信号通路的探索及抗体偶联物(antibody-drug conjugate,ADC)药物研究为LCNEC靶向治疗提供了新方向。免疫治疗方面,程序性死亡受体-1(programmed cell death protein-1,PD-1)及其配体(programmed cell death protein-ligand 1,PD-L1)抑制剂、PD-1/细胞毒性T淋巴细胞相关抗原(cytotoxic T lymphocyte antigen 4,CTLA-4)双抗在LCNEC中的应用已有研究,在后线缺乏治疗方案时,可考虑选择免疫治疗。尽管有关LCNEC患者应用免疫治疗及靶向治疗获得长期生存获益的病例被持续报道,但仍有待前瞻性及大样本研究确定其在LCNEC中的治疗价值。展开更多
In this paper, we first transferred the normal height of ASTER GDEM v2 to GPS ellipsoidal height based on the EGM96, and analyzed the precision of this digital elevation model in the northeastern margin of Tibetan Pla...In this paper, we first transferred the normal height of ASTER GDEM v2 to GPS ellipsoidal height based on the EGM96, and analyzed the precision of this digital elevation model in the northeastern margin of Tibetan Plateau (NETP) combining with 89 ground GPS measurements. The results demonstrate that the standard deviation of the difference between ASTER GDEM and GPS results is 9.3 m, and the precision of ASTER GDEM in this region is approximately 10 m. We also calculated the free-air gravity anomalies using the relative gravity data and DEM model in NETP. The results show that the gravity anomalies are generally negative with local positive values, ranging from -156 to 43 reGal (10-5 m/s2). At last, we compared the EGM2008 free-air gravity anomalies (FGAs) with the ground gravity measurements, and their spatial patterns are similar. While the point-to-point difference between the modeling and measuring results shows great discrepancy. The free-air gravity anomalies of EGM2008 in this region range from -154 to 96 mGal, and the difference between EGM2008 and the ground measurements ranges from -102 to 50 regal. The mean difference is -17.34 mGal, and the standard deviation is 46.69 mGal, which demonstrates that the EGM2008 has poor precision in the northeastern margin of Tibet Plateau.展开更多
<strong>Objective:</strong> To investigate the impact of local tumor factors on the prognosis of non-metastatic esophageal squamous cell carcinoma patients. <strong>Methods:</strong> We perform...<strong>Objective:</strong> To investigate the impact of local tumor factors on the prognosis of non-metastatic esophageal squamous cell carcinoma patients. <strong>Methods:</strong> We performed a retrospective analysis of data from 278 consecutive esophageal squamous cell carcinoma patients between January 2009 and December 2016. The prognosis factors such as the GTV volume, GTV maximum diameter, and GTV length were analyzed. <strong>Results:</strong> The results of ROC curve analysis showed that prognosis critical values of the GTV volume, GTV maximum diameter, and GTV length were 27.98 cm<sup>3</sup>, 1.80 and 5.85 cm, respectively. The result of the univariate analysis showed that the GTV volume (P = 0.0184), GTV maximum diameter (P = 0.0246), and GTV length (P = 0.0035) were the prognostic factors for overall survival;the barium meal length (P = 0.0149) was the prognostic factor for local control. The multivariate analysis showed that the barium meal length (P = 0.0013), GTV maximum diameter (P = 0.0047), and GTV length (P = 0.0032) as the independent prognostic factors associated with overall survival;the barium meal length (P = 0.0037) was the only independent prognostic factors for local control. <strong>Conclusion: </strong>The esophageal lesion length was the main prognosis factor for patients with non-metastatic esophageal squamous cell carcinoma. Therefore, we suggest that the physician must give enough attention to these patients in clinical practice, and give active treatment.展开更多
The Earth is an elastic body,and the surface mass loading changes will lead to elastic loading deformation on the surface of the Earth.In this study,we investigated the surface seasonal mass changes and vertical crust...The Earth is an elastic body,and the surface mass loading changes will lead to elastic loading deformation on the surface of the Earth.In this study,we investigated the surface seasonal mass changes and vertical crustal deformation in North China using the data obtained by the techniques of the Global Positioning System(GPS),Gravity Recovery and Climate Experiment(GRACE)and Surface Loading Models(SLMs).The seasonal annual signal and semi-annual signal obtained by the three techniques show strong correlations.The average value of the weighted root-mean-square(WRMS)of the all 30 sites is 58%after deducting the GRACE-obtained vertical deformation from the GPS-derived vertical deformation.However,the consistency of results between GPS and SLMs is not so good,with a 31%mean WRMS reduction,due to the fact that the global SLMs perform not well in North China.The GRACEmeasured long-term trend is deducted from the GPS-obtained vertical rates to reveal the crustal displacement caused by the underground factors such as tectonic movement and groundwater in North China.The results show that the rates of stations HECX and TJBH are very large,more than 10 mm/yr,which suggests that the surface subsidence is caused by excessive exploitation of groundwater.展开更多
Scientists pay great attention to different-time-scale signals in the lengllh of day (LOD) variations △LOD, which provide signatures of the Earth's interior structure, couplings among different layers, and potenti...Scientists pay great attention to different-time-scale signals in the lengllh of day (LOD) variations △LOD, which provide signatures of the Earth's interior structure, couplings among different layers, and potential excitations of ocean and atmosphere. In this study, based on the ensemble empirical mode decomposition (EEMD), we analyzed the latest time series of △LOD data spanning from January 1962 to March 2015. We observed the signals with periods and amplitudes of about 0.5 month and 0.19 ms, 1.0 month and 0.19 ms, 0.5 yr and 0.22 ms, 1.0 yr and 0.18 ms, 2.28 yr and 0.03 ms, 5.48 yr and 0.05 ms, respectively, in coincidence with the results of predecessors. In addition, some signals that were previously not definitely observed by predecessors were detected in this study, with periods and amplitudes of 9.13 d and 0.12 ms, 13.69 yr and 0.10 ms, respectively. The mechanisms of the LOD fluctuations of these two signals are still open.展开更多
The orthometric height (OH) system plays a key role in geodesy, and it has broad applications in various fields and activities. Based on general relativity theory (GRT), on an arbitrary equi-geo- potential surface, th...The orthometric height (OH) system plays a key role in geodesy, and it has broad applications in various fields and activities. Based on general relativity theory (GRT), on an arbitrary equi-geo- potential surface, there does not exist the gravity frequency shift of an electromagnetic wave signal. However, between arbitrary two different equi-geopotential surfaces, there exists the gra- vity frequency shift of the signal. The relationship between the geopotential difference and the gravity frequency shift between arbitrary two points P and Q is referred to as the gravity frequency shift equation. Based on this equation, one can determine the geopotential difference as well as the OH difference between two separated points P and Q either by using electromagnetic wave signals propagated between P and Q, or by using the Global Positioning System (GPS) satellite signals received simultaneously by receivers at P and Q. Suppose an emitter at P emits a signal with frequency f towards a receiver at Q, and the received frequency of the signal at Q is , or suppose an emitter on board a flying GPS satellite emits signals with frequency f towards two receivers at P and Q on ground, and the received frequencies of the signals at P and Q are and , respectively, then, the geopoten-tial dif- ference between these two points can be determined based on the geopotential frequen- cy shift equation, using either the gravity frequency shift ? f or ? , and the corresponding OH difference is further determined based on the Bruns’ formula. Besides, using this approach a unified world height datum system might be realized, because P and Q could be chosen quite arbitrarily, e.g., they are located on two separated continents or islands.展开更多
The global oceanic/atmospheric tides exert decelerating/accelerating secular torques on the Earth rotation. We developed new formulations to accurately calculate amounts of two kinds of secular tidal torques. After Me...The global oceanic/atmospheric tides exert decelerating/accelerating secular torques on the Earth rotation. We developed new formulations to accurately calculate amounts of two kinds of secular tidal torques. After Melchior, we found that an additional factor 1+k-l = 1.216, which has been formerly neglected, must be multiplied unto the tidal torque integral. By using our refined formulations and the recent oceanic/atmospheric global tide models, we found that:(i) semidiurnal oceanic lunar/solar tides exert decelerating torques of about-4.462 × 10^(16)/-0.676 × 10^(16) Nm respectively and(ii) atmospheric S_2 tide exerts accelerating torque of 1.55 × 10^(15) Nm. Former estimates of the atmospheric S_2 tidal torque were twice as large as our estimate due to improper consideration of loading effect. We took the load Love number for atmospheric loading effect from Guo et al.(2004). For atmospheric loading of spherical harmonic degree two, the value of k′=-0.6031 is different from that for ocean loading as k′ =-0.3052,while the latter is currently used for both cases-ocean/atmospheric loading-without distinction. We discuss(i) the amount of solid Earth tidal dissipation(which has been left most uncertain) and(ii) secular changes of the dynamical state of the Earth-Moon-Sun system. Our estimate of the solid Earth tidal torque is-4.94×10^(15) Nm.展开更多
The total capacity of Three Gorges Reservoir(TGR) and Danjiangkou Reservoir(DJR) is large and has significant seasonal fluctuations, which give rise to crustal instability. In this research, we focus on studying t...The total capacity of Three Gorges Reservoir(TGR) and Danjiangkou Reservoir(DJR) is large and has significant seasonal fluctuations, which give rise to crustal instability. In this research, we focus on studying the temporal and spatial variation of crustal deformation in Hubei Province caused by reservoir impoundment of TGR and DJR.The Digital Elevation Model, historical hydrological information, GPS monitoring data and load-induced deformation model are combined to monitor the crustal deformation. The modeled results indicate that in the trapezoidal area between the TGR and DJR, the average vertical deformations at different latitudes have different variation tendencies. The vertical deformation modulus and fluctuation amplitude are larger at the latitude of 33 N/32.5 N from 2003 to 2006 and at the latitude of 31 N/32.5 N from 2008 to 2014, while the latter are much larger than the former. Moreover, from2008 to 2014, the frequency and the intensity of seismic activities are all enhanced significantly in this region. The modeled results at the GPS sites are consistent with the vertical displacement of GPS monitoring results in trends and the waveform. It can be inferred that the seasonal deformation is elastic. The horizontal deformation components have the same variation trends with that at each GPS monitoring station,which demonstrates that the whole region is moving toward the southeast. The spatial variation of crustal deformation demonstrates that the impoundment of TGR in2003 causes significant vertical displacements, with the maximum modulus of 32 mm downward located in Xiangjiang River's estuary. When the water storage increases, the maximum value will become larger, and the location will move toward the upstream.Besides, the earthquakes occurred more frequently in the region with maximum deformation modulus.展开更多
Earth's variable rotation is mainly produced by the variability of the AAM(atmospheric angular momentum). In particular, the axial AAM component X_3, which undergoes especially strong variations,induces changes in ...Earth's variable rotation is mainly produced by the variability of the AAM(atmospheric angular momentum). In particular, the axial AAM component X_3, which undergoes especially strong variations,induces changes in the Earth's rotation rate. In this study we analysed maps of regional input into the effective axial AAM from 1948 through 2011 from NCEP/NCAR reanalysis. Global zonal circulation patterns related to the LOD(length of day) were described. We applied MSSA(Multichannel Singular Spectrum Analysis) jointly to the mass and motion components of AAM, which allowed us to extract annual, semiannual, 4-mo nth, quasi-biennial, 5-year, and low-frequency oscillations. PCs(Principal components) strongly related to ENSO(El Nino southern oscillation) were released. They can be used to study ENSO-induced changes in pressure and wind fields and their coupling to LOD. The PCs describing the trends have captured slow atmospheric circulation changes possibly related to climate variability.展开更多
General relativity theory(GRT)concludes that a precise clock ticks at different running rates if it is under the influence of different geopotentials.Therefore,by comparing the running rates of clocks at arbitrary two...General relativity theory(GRT)concludes that a precise clock ticks at different running rates if it is under the influence of different geopotentials.Therefore,by comparing the running rates of clocks at arbitrary two stations,the geopotential difference between them can be determined.In this study,with the help of two hydrogen atomic clocks(noted as H-masers),using the two-way satellite time and frequency transfer(TWSTFT)technique,we carried out experiments of the geopotential difference determination at the China Aerospace Science&Industry Corporation(CASIC),Beijing.Here the ensemble empirical mode decomposition(EEMD)method is adopted to remove periodic signals included in the original observations.Finally,the clock-comparison-determined geopotential difference in the experiments is determined.Results show that the difference between the geopotential difference determined by GRT and that determined by measuring tape is about 1316.1±931.0 m2s-2,which is equivalent to 134.3±95.0 m in height,and in consistence with the stability of the H-masers applied in the experiments(at the level of10-15/day).With the rapid improvement of atomic clocks’accuracy,the geopotential determination by accurate clocks is prospective,and it is promising to realize the unification of the world vertical height system(WVHS).展开更多
Previous studies suggest that tidal friction gives rise to the secular deceleration of the Earth rotation by a quantity of about 2.25 ms/cy. Here we just consider additional contributions to the secular Earth rotation...Previous studies suggest that tidal friction gives rise to the secular deceleration of the Earth rotation by a quantity of about 2.25 ms/cy. Here we just consider additional contributions to the secular Earth rotation deceleration. Atmospheric solar semi-diurnal tide has a small amplitude and certain amount of phase lead. This periodic global air-mass excess distribution exerts a quasi-constant torque to accelerate the Earth's spin rotation. Using an updated atmospheric tide model, we re-estimate the amounts of this atmospheric acceleration torque and corresponding energy input, of which the associated change rate in LOD(length of day) is-0.1 ms/cy. In another aspect, evidences from space-geodesy and sea level rise observations suggest that Earth expands at a rate of 0.35 mm/yr in recent decades, which gives rise to the increase of LOD at rate of 1.0 ms/cy. Hence, if the previous estimate due to the tidal friction is correct, the secular Earth rotation deceleration due to tidal friction and Earth expansion should be 3.15 ms/cy.展开更多
The Earth's rotational normal modes depend on Earth model used, including the layer structures,principal inertia moments of different layers and the compliances. This study focuses on providing numerical solution ...The Earth's rotational normal modes depend on Earth model used, including the layer structures,principal inertia moments of different layers and the compliances. This study focuses on providing numerical solution of the rotational normal modes of a triaxial two-layered anelastic Earth model without external forces but with considering the complex forms of compliances and the electromagnetic coupling between the core and mantle. Based on the present knowledge of the Chandler wobble(CW) and Free Core Nutation(FCN), we provide a set of complete compliances which could be used for reference in further investigations. There are eight rotational normal mode solutions, four of which might exist in nature. However, in reality only two of these four solutions correspond to the present motion status of the prograde CW and the retrograde FCN. On one hand, our numerical calculations show that the periods and quality factors(Qs) of CW and FCN are respectively 434.90 and 429.86 mean solar days(d) and 76.56 and 23988.47 under frequency-dependent assumption, and the triaxiality prolongs CW about 0.01 d and has hardly effect on FCN. On the other hand, we analyze the sensibility of compliances and electromagnetic coupling parameter on the periods and Qs of CW and FCN and find the sensitive parameters with respect to them.展开更多
Different modification methods and software programs were developed to obtain accurate local geoid models in the past two decades.The quantitative effect of the main factors on the accuracy of local geoid modeling is ...Different modification methods and software programs were developed to obtain accurate local geoid models in the past two decades.The quantitative effect of the main factors on the accuracy of local geoid modeling is still ambiguous and has not been clearly diagnosed yet.This study presents efforts to find the most influential factors on the accuracy of the local geoid model,as well as the amount of each factor’s effect quantitatively.The methodology covers extracting the quantitative characteristics of 16 articles regarding local geoid models of different countries.The Statistical Package of Social Sciences(SPSS)software formulated a strong multiple regression model of correlation coefficient r = 0.999 with a high significance coefficient of determination R^2 = 0.997 and adjusted R^2 = 0,98 for the required effective factors.Then,factor analysis is utilized to extract the dominant factors which include:accuracy of gravity data(40%),the density of gravity data(25%)(total gravity factors is 65%),the Digital Elevation Model(DEM)resolution(16%),the accuracy of GPS/leveling points(10%)and the area of the terrain of the country/state under the study(9%).These results of this study will assist in developing more accurate local geoid models.展开更多
Shallow layer method(SLM)based on the definition of the geoid can determine the gravity field inside the shallow layer.In this study,the orthometric height of Mount Everest(HME)is calculated based on SLM,in which the ...Shallow layer method(SLM)based on the definition of the geoid can determine the gravity field inside the shallow layer.In this study,the orthometric height of Mount Everest(HME)is calculated based on SLM,in which the key is to construct the shallow layer model.The top and bottom boundaries of the shallow layer model are the natural surface of the Earth and the surface at a certain depth below the reference geoid,respectively.The model-combined strategies to determine the geoid undulation(N)based on SLM are applied to calculate the HME by two approaches:(1)direct calculation by combining N and geodetic height(h);(2)calculation by the segment summation approach(SSA)using the gravity field inside the shallow layer.On December 8,2020,the Chinese and Nepalese governments announced an authoritative value of 8848.86 m,which is referred to a geoid determined by the International Height Reference System(IHRS)(i.e.,the geopotential is 62636853.4 m^(2) s^(-2)).Here,our results(combined strategies(1)EGM2008 and CRUST1.0,(2)EGM2008 and CRUST2.0,(3)EIGEN-6 C4 and CRUST1.0,and(4)EIGEN-6 C4 and CRUST2.0)are referred to the geoid defined by WGS84(i.e.,the geopotential is 62636851.7 m^(2) s^(-2)).The differences between our results and the authoritative value(8848.86 m)are 0.448 m,-0.009 m,-0.295 m,and -0.741 m by the first approach,and 0.539 m,0.083 m,-0.214 m,and -0.647 m by the second approach.When the reference surface WGS84 geoid is converted to the IHRS geoid,the differences are 0.620 m,0.163 m,-0.123 m,and -0.569 m by the first approach,and0.711 m,0.225 m,-0.042 m,and -0.475 m by the second approach.展开更多
Until now, the calculation of the principal inertia moment of the triaxial three-layered Earth mainly adopts the scaling method. This method assumes that the corresponding principal inertia axes of the layers coincide...Until now, the calculation of the principal inertia moment of the triaxial three-layered Earth mainly adopts the scaling method. This method assumes that the corresponding principal inertia axes of the layers coincide each other, but this is not the case. In this paper, a rigorous tensor transformation rule is adopted to calculate the principal inertia moments(PIMs) of different layers. Appling the new estimated PIMs to the triaxial three-layered Earth rotation theory with considering various couplings, the numerical calculations show that the periods of the Chandler Wobble(CW), Free Core Nutation(FCN), Free Inner Core Nutation(FICN) and Inner Core Wobble(ICW) are respectively 433.0, 430.8, 943.9 and 2735.9 mean solar days, which are well comparable with the corresponding values accepted at present in geoscience community. Better estimates of the PIMs of different layers may provide better constrains on relevant physical parameters of the Earth’s interior.展开更多
Using continuous 1-Hz sampling time-series recorded by a SC (superconducting gravimeter) at Hsinchu station, Taiwan of China, we investigate the anomalous gravity signals prior to 71 large earthquakes with moment ma...Using continuous 1-Hz sampling time-series recorded by a SC (superconducting gravimeter) at Hsinchu station, Taiwan of China, we investigate the anomalous gravity signals prior to 71 large earthquakes with moment magnitude larger than 7.0 (Mw7.0) occurred between 1 Jan 2008 and 31 Dec 2011. We firstly evaluate the noise level of the SC records at Hsinchu (HS) station in microseismic bands from 0.05 Hz to 0.1 Hz by computing the PSD (power spectral density) of seismically quiet days selected based on the RMS of records. Based on the analysis of the noise level and the spectral features of the seismically quiet SC records at I-IS station, we detect ACSs (anomalous gravity signals) prior to large earthquakes. We apply HHT (Hilbert-Huang transformation) to establish the TFEP (time-frequency-energy paradigms) and MS (marginal spectra) of the SC data before the large earthquakes, and the characteristics of TFEP and MS of the SCs data during the typhoon event are also analyzed. By comparing the spectral characteristics of the SCs data during seismically quiet period, three types of ACSs are found; and the occurrence rate of ACSs before 71 earthquakes is given in terms of the cases with different epicenter distance and different focal depth. The statistical results show that 56.3% of all the examined large earthquakes were preceded by AGSs; and if we constrain the epicenter distance to be smaller than 3500 km and focal depth less than 300 kin, 75.3% of the examined large earthquakes can be associated with the ACSs. Especially, we note that for all the large earthquakes occurred in the Eurasian plate in recent four years, the precursory AGSs can always be found in the SC data recorded at HS station. Our investigations suggest that the AGSs prior to large earthquakes may be related to focal depth, epicentre distance and location.展开更多
Since the 1950s,the length-of-day variations(DLOD)of the Earth’s rotation have received extensive attention and research in various fields,including geodynamics,geomagnetism,geodesy,seismology,geology,marine science,...Since the 1950s,the length-of-day variations(DLOD)of the Earth’s rotation have received extensive attention and research in various fields,including geodynamics,geomagnetism,geodesy,seismology,geology,marine science,environmental science,and even biology and physics.Despite the abundance of related studies and notable advancements,the underlying mechanism behind the decadal changes in DLOD remains a persistent unresolved question.An essential aspect of investigating this issue lies in its potential to unveil the Earth’s core motions[1,2].Despite the presence of various hypothesized and constructed models about the Earth’s core motions,these models typically exhibit simplicity.展开更多
文摘精准医学的发展正在改变癌症的诊疗方式,分子靶点的不断探索及新的药物和疗效数据涌现,为癌症患者带来生机。肺大细胞神经内分泌癌(large cell neuroendocrine carcinoma of the lung,LCNEC)是相对罕见的肿瘤,也在精准医学的蓬勃发展中迎来曙光。近年来,基因组和转录组分析揭示了LCNEC的不同亚型,为个性化的治疗带来希望。在靶向治疗方面,已有关于LCNEC携带EGFR、ALK、BRAF V600E突变位点的患者从靶向治疗中获益的报道,PI3K-AKT-MTOR通路、BDNF/TrkB信号通路的探索及抗体偶联物(antibody-drug conjugate,ADC)药物研究为LCNEC靶向治疗提供了新方向。免疫治疗方面,程序性死亡受体-1(programmed cell death protein-1,PD-1)及其配体(programmed cell death protein-ligand 1,PD-L1)抑制剂、PD-1/细胞毒性T淋巴细胞相关抗原(cytotoxic T lymphocyte antigen 4,CTLA-4)双抗在LCNEC中的应用已有研究,在后线缺乏治疗方案时,可考虑选择免疫治疗。尽管有关LCNEC患者应用免疫治疗及靶向治疗获得长期生存获益的病例被持续报道,但仍有待前瞻性及大样本研究确定其在LCNEC中的治疗价值。
基金supported by NSFCs (grant Nos. 61627824, 41274083, 41174011, 41429401, 41210006, 41128003, 41021061)National 973 Project China (grant Nos. 2013CB733302 and 2013CB733305)
文摘In this paper, we first transferred the normal height of ASTER GDEM v2 to GPS ellipsoidal height based on the EGM96, and analyzed the precision of this digital elevation model in the northeastern margin of Tibetan Plateau (NETP) combining with 89 ground GPS measurements. The results demonstrate that the standard deviation of the difference between ASTER GDEM and GPS results is 9.3 m, and the precision of ASTER GDEM in this region is approximately 10 m. We also calculated the free-air gravity anomalies using the relative gravity data and DEM model in NETP. The results show that the gravity anomalies are generally negative with local positive values, ranging from -156 to 43 reGal (10-5 m/s2). At last, we compared the EGM2008 free-air gravity anomalies (FGAs) with the ground gravity measurements, and their spatial patterns are similar. While the point-to-point difference between the modeling and measuring results shows great discrepancy. The free-air gravity anomalies of EGM2008 in this region range from -154 to 96 mGal, and the difference between EGM2008 and the ground measurements ranges from -102 to 50 regal. The mean difference is -17.34 mGal, and the standard deviation is 46.69 mGal, which demonstrates that the EGM2008 has poor precision in the northeastern margin of Tibet Plateau.
文摘<strong>Objective:</strong> To investigate the impact of local tumor factors on the prognosis of non-metastatic esophageal squamous cell carcinoma patients. <strong>Methods:</strong> We performed a retrospective analysis of data from 278 consecutive esophageal squamous cell carcinoma patients between January 2009 and December 2016. The prognosis factors such as the GTV volume, GTV maximum diameter, and GTV length were analyzed. <strong>Results:</strong> The results of ROC curve analysis showed that prognosis critical values of the GTV volume, GTV maximum diameter, and GTV length were 27.98 cm<sup>3</sup>, 1.80 and 5.85 cm, respectively. The result of the univariate analysis showed that the GTV volume (P = 0.0184), GTV maximum diameter (P = 0.0246), and GTV length (P = 0.0035) were the prognostic factors for overall survival;the barium meal length (P = 0.0149) was the prognostic factor for local control. The multivariate analysis showed that the barium meal length (P = 0.0013), GTV maximum diameter (P = 0.0047), and GTV length (P = 0.0032) as the independent prognostic factors associated with overall survival;the barium meal length (P = 0.0037) was the only independent prognostic factors for local control. <strong>Conclusion: </strong>The esophageal lesion length was the main prognosis factor for patients with non-metastatic esophageal squamous cell carcinoma. Therefore, we suggest that the physician must give enough attention to these patients in clinical practice, and give active treatment.
基金funded by the NSFC(grant Nos.91638203,41631072,41774024,41721003,41774020,41429401)China Postdoctoral Science Foundation(No.2018M630879)Guangxi Key Laboratory of Spatial Information and Geomatics,China(No.16-380-25-32).
文摘The Earth is an elastic body,and the surface mass loading changes will lead to elastic loading deformation on the surface of the Earth.In this study,we investigated the surface seasonal mass changes and vertical crustal deformation in North China using the data obtained by the techniques of the Global Positioning System(GPS),Gravity Recovery and Climate Experiment(GRACE)and Surface Loading Models(SLMs).The seasonal annual signal and semi-annual signal obtained by the three techniques show strong correlations.The average value of the weighted root-mean-square(WRMS)of the all 30 sites is 58%after deducting the GRACE-obtained vertical deformation from the GPS-derived vertical deformation.However,the consistency of results between GPS and SLMs is not so good,with a 31%mean WRMS reduction,due to the fact that the global SLMs perform not well in North China.The GRACEmeasured long-term trend is deducted from the GPS-obtained vertical rates to reveal the crustal displacement caused by the underground factors such as tectonic movement and groundwater in North China.The results show that the rates of stations HECX and TJBH are very large,more than 10 mm/yr,which suggests that the surface subsidence is caused by excessive exploitation of groundwater.
基金supported by National 973 Project China (2013CB733305)National Natural Science Foundation of China (NSFCs) (41174011,41429401,41210006,41128003,41021061)
文摘Scientists pay great attention to different-time-scale signals in the lengllh of day (LOD) variations △LOD, which provide signatures of the Earth's interior structure, couplings among different layers, and potential excitations of ocean and atmosphere. In this study, based on the ensemble empirical mode decomposition (EEMD), we analyzed the latest time series of △LOD data spanning from January 1962 to March 2015. We observed the signals with periods and amplitudes of about 0.5 month and 0.19 ms, 1.0 month and 0.19 ms, 0.5 yr and 0.22 ms, 1.0 yr and 0.18 ms, 2.28 yr and 0.03 ms, 5.48 yr and 0.05 ms, respectively, in coincidence with the results of predecessors. In addition, some signals that were previously not definitely observed by predecessors were detected in this study, with periods and amplitudes of 9.13 d and 0.12 ms, 13.69 yr and 0.10 ms, respectively. The mechanisms of the LOD fluctuations of these two signals are still open.
文摘The orthometric height (OH) system plays a key role in geodesy, and it has broad applications in various fields and activities. Based on general relativity theory (GRT), on an arbitrary equi-geo- potential surface, there does not exist the gravity frequency shift of an electromagnetic wave signal. However, between arbitrary two different equi-geopotential surfaces, there exists the gra- vity frequency shift of the signal. The relationship between the geopotential difference and the gravity frequency shift between arbitrary two points P and Q is referred to as the gravity frequency shift equation. Based on this equation, one can determine the geopotential difference as well as the OH difference between two separated points P and Q either by using electromagnetic wave signals propagated between P and Q, or by using the Global Positioning System (GPS) satellite signals received simultaneously by receivers at P and Q. Suppose an emitter at P emits a signal with frequency f towards a receiver at Q, and the received frequency of the signal at Q is , or suppose an emitter on board a flying GPS satellite emits signals with frequency f towards two receivers at P and Q on ground, and the received frequencies of the signals at P and Q are and , respectively, then, the geopoten-tial dif- ference between these two points can be determined based on the geopotential frequen- cy shift equation, using either the gravity frequency shift ? f or ? , and the corresponding OH difference is further determined based on the Bruns’ formula. Besides, using this approach a unified world height datum system might be realized, because P and Q could be chosen quite arbitrarily, e.g., they are located on two separated continents or islands.
基金supported by the Space Geodesy Technology Development Program of Korea Astronomy and Space Science Institutesupported by the NSFC(grant Nos.41631072,41721003,41574007 and 41429401)the Discipline Innovative Engineering Plan of Modern Geodesy and Geodynamics(grant No.B17033)
文摘The global oceanic/atmospheric tides exert decelerating/accelerating secular torques on the Earth rotation. We developed new formulations to accurately calculate amounts of two kinds of secular tidal torques. After Melchior, we found that an additional factor 1+k-l = 1.216, which has been formerly neglected, must be multiplied unto the tidal torque integral. By using our refined formulations and the recent oceanic/atmospheric global tide models, we found that:(i) semidiurnal oceanic lunar/solar tides exert decelerating torques of about-4.462 × 10^(16)/-0.676 × 10^(16) Nm respectively and(ii) atmospheric S_2 tide exerts accelerating torque of 1.55 × 10^(15) Nm. Former estimates of the atmospheric S_2 tidal torque were twice as large as our estimate due to improper consideration of loading effect. We took the load Love number for atmospheric loading effect from Guo et al.(2004). For atmospheric loading of spherical harmonic degree two, the value of k′=-0.6031 is different from that for ocean loading as k′ =-0.3052,while the latter is currently used for both cases-ocean/atmospheric loading-without distinction. We discuss(i) the amount of solid Earth tidal dissipation(which has been left most uncertain) and(ii) secular changes of the dynamical state of the Earth-Moon-Sun system. Our estimate of the solid Earth tidal torque is-4.94×10^(15) Nm.
基金supported by National 973 Project China (2013CB733302, 2013CB733305)National Natural Science Foundation of China (41174011, 41429401, 41210006, 41128003, 41021061)
文摘The total capacity of Three Gorges Reservoir(TGR) and Danjiangkou Reservoir(DJR) is large and has significant seasonal fluctuations, which give rise to crustal instability. In this research, we focus on studying the temporal and spatial variation of crustal deformation in Hubei Province caused by reservoir impoundment of TGR and DJR.The Digital Elevation Model, historical hydrological information, GPS monitoring data and load-induced deformation model are combined to monitor the crustal deformation. The modeled results indicate that in the trapezoidal area between the TGR and DJR, the average vertical deformations at different latitudes have different variation tendencies. The vertical deformation modulus and fluctuation amplitude are larger at the latitude of 33 N/32.5 N from 2003 to 2006 and at the latitude of 31 N/32.5 N from 2008 to 2014, while the latter are much larger than the former. Moreover, from2008 to 2014, the frequency and the intensity of seismic activities are all enhanced significantly in this region. The modeled results at the GPS sites are consistent with the vertical displacement of GPS monitoring results in trends and the waveform. It can be inferred that the seasonal deformation is elastic. The horizontal deformation components have the same variation trends with that at each GPS monitoring station,which demonstrates that the whole region is moving toward the southeast. The spatial variation of crustal deformation demonstrates that the impoundment of TGR in2003 causes significant vertical displacements, with the maximum modulus of 32 mm downward located in Xiangjiang River's estuary. When the water storage increases, the maximum value will become larger, and the location will move toward the upstream.Besides, the earthquakes occurred more frequently in the region with maximum deformation modulus.
基金supported by Russian Foundation for Basic Research grants No. 17-05-00989, No. 16-05-00753,NRU HSE and visiting grants positions at Paris observatory and Wuhan university for the first authorpartially supported by grants by NSF/IGFA Belmont Forum Project (Grant No. ICER-1342644)the Chinese Academy of Sciences/SAFEA International Partnership Program for Creative Research Teams(Grant No. KZZD-EW-TZ-05)
文摘Earth's variable rotation is mainly produced by the variability of the AAM(atmospheric angular momentum). In particular, the axial AAM component X_3, which undergoes especially strong variations,induces changes in the Earth's rotation rate. In this study we analysed maps of regional input into the effective axial AAM from 1948 through 2011 from NCEP/NCAR reanalysis. Global zonal circulation patterns related to the LOD(length of day) were described. We applied MSSA(Multichannel Singular Spectrum Analysis) jointly to the mass and motion components of AAM, which allowed us to extract annual, semiannual, 4-mo nth, quasi-biennial, 5-year, and low-frequency oscillations. PCs(Principal components) strongly related to ENSO(El Nino southern oscillation) were released. They can be used to study ENSO-induced changes in pressure and wind fields and their coupling to LOD. The PCs describing the trends have captured slow atmospheric circulation changes possibly related to climate variability.
基金supported by National Natural Science Foundation of China(NSFC)(grant Nos.41721003,41631072,41874023,41804012,41429401,41574007)Natural Science Foundation of Hubei Province(grant No.2019CFB611)
文摘General relativity theory(GRT)concludes that a precise clock ticks at different running rates if it is under the influence of different geopotentials.Therefore,by comparing the running rates of clocks at arbitrary two stations,the geopotential difference between them can be determined.In this study,with the help of two hydrogen atomic clocks(noted as H-masers),using the two-way satellite time and frequency transfer(TWSTFT)technique,we carried out experiments of the geopotential difference determination at the China Aerospace Science&Industry Corporation(CASIC),Beijing.Here the ensemble empirical mode decomposition(EEMD)method is adopted to remove periodic signals included in the original observations.Finally,the clock-comparison-determined geopotential difference in the experiments is determined.Results show that the difference between the geopotential difference determined by GRT and that determined by measuring tape is about 1316.1±931.0 m2s-2,which is equivalent to 134.3±95.0 m in height,and in consistence with the stability of the H-masers applied in the experiments(at the level of10-15/day).With the rapid improvement of atomic clocks’accuracy,the geopotential determination by accurate clocks is prospective,and it is promising to realize the unification of the world vertical height system(WVHS).
基金partly supported by National 973 Project China(2013CB733305)NSFC(41174011,41210006,41504019)supported by a fund from Korea Astronomy and Space Science Institute(2016 Space Geodesy Project about Atmospheric/Ocean Tidal Effects)
文摘Previous studies suggest that tidal friction gives rise to the secular deceleration of the Earth rotation by a quantity of about 2.25 ms/cy. Here we just consider additional contributions to the secular Earth rotation deceleration. Atmospheric solar semi-diurnal tide has a small amplitude and certain amount of phase lead. This periodic global air-mass excess distribution exerts a quasi-constant torque to accelerate the Earth's spin rotation. Using an updated atmospheric tide model, we re-estimate the amounts of this atmospheric acceleration torque and corresponding energy input, of which the associated change rate in LOD(length of day) is-0.1 ms/cy. In another aspect, evidences from space-geodesy and sea level rise observations suggest that Earth expands at a rate of 0.35 mm/yr in recent decades, which gives rise to the increase of LOD at rate of 1.0 ms/cy. Hence, if the previous estimate due to the tidal friction is correct, the secular Earth rotation deceleration due to tidal friction and Earth expansion should be 3.15 ms/cy.
基金supported by the NSFC (grant Nos. 41631072, 41721003, 41874023, 41574007, and 41429401)the Discipline Innovative Engineering Plan of Modern Geodesy and Geodynamics (grant No. B17033)the DAAD Thematic Network Project (grant No. 57173947)
文摘The Earth's rotational normal modes depend on Earth model used, including the layer structures,principal inertia moments of different layers and the compliances. This study focuses on providing numerical solution of the rotational normal modes of a triaxial two-layered anelastic Earth model without external forces but with considering the complex forms of compliances and the electromagnetic coupling between the core and mantle. Based on the present knowledge of the Chandler wobble(CW) and Free Core Nutation(FCN), we provide a set of complete compliances which could be used for reference in further investigations. There are eight rotational normal mode solutions, four of which might exist in nature. However, in reality only two of these four solutions correspond to the present motion status of the prograde CW and the retrograde FCN. On one hand, our numerical calculations show that the periods and quality factors(Qs) of CW and FCN are respectively 434.90 and 429.86 mean solar days(d) and 76.56 and 23988.47 under frequency-dependent assumption, and the triaxiality prolongs CW about 0.01 d and has hardly effect on FCN. On the other hand, we analyze the sensibility of compliances and electromagnetic coupling parameter on the periods and Qs of CW and FCN and find the sensitive parameters with respect to them.
文摘Different modification methods and software programs were developed to obtain accurate local geoid models in the past two decades.The quantitative effect of the main factors on the accuracy of local geoid modeling is still ambiguous and has not been clearly diagnosed yet.This study presents efforts to find the most influential factors on the accuracy of the local geoid model,as well as the amount of each factor’s effect quantitatively.The methodology covers extracting the quantitative characteristics of 16 articles regarding local geoid models of different countries.The Statistical Package of Social Sciences(SPSS)software formulated a strong multiple regression model of correlation coefficient r = 0.999 with a high significance coefficient of determination R^2 = 0.997 and adjusted R^2 = 0,98 for the required effective factors.Then,factor analysis is utilized to extract the dominant factors which include:accuracy of gravity data(40%),the density of gravity data(25%)(total gravity factors is 65%),the Digital Elevation Model(DEM)resolution(16%),the accuracy of GPS/leveling points(10%)and the area of the terrain of the country/state under the study(9%).These results of this study will assist in developing more accurate local geoid models.
基金supported in part by the National Natural Science Foundations of China under Grants Nos.41631072,42030105,41721003,41804012,and 41874023。
文摘Shallow layer method(SLM)based on the definition of the geoid can determine the gravity field inside the shallow layer.In this study,the orthometric height of Mount Everest(HME)is calculated based on SLM,in which the key is to construct the shallow layer model.The top and bottom boundaries of the shallow layer model are the natural surface of the Earth and the surface at a certain depth below the reference geoid,respectively.The model-combined strategies to determine the geoid undulation(N)based on SLM are applied to calculate the HME by two approaches:(1)direct calculation by combining N and geodetic height(h);(2)calculation by the segment summation approach(SSA)using the gravity field inside the shallow layer.On December 8,2020,the Chinese and Nepalese governments announced an authoritative value of 8848.86 m,which is referred to a geoid determined by the International Height Reference System(IHRS)(i.e.,the geopotential is 62636853.4 m^(2) s^(-2)).Here,our results(combined strategies(1)EGM2008 and CRUST1.0,(2)EGM2008 and CRUST2.0,(3)EIGEN-6 C4 and CRUST1.0,and(4)EIGEN-6 C4 and CRUST2.0)are referred to the geoid defined by WGS84(i.e.,the geopotential is 62636851.7 m^(2) s^(-2)).The differences between our results and the authoritative value(8848.86 m)are 0.448 m,-0.009 m,-0.295 m,and -0.741 m by the first approach,and 0.539 m,0.083 m,-0.214 m,and -0.647 m by the second approach.When the reference surface WGS84 geoid is converted to the IHRS geoid,the differences are 0.620 m,0.163 m,-0.123 m,and -0.569 m by the first approach,and0.711 m,0.225 m,-0.042 m,and -0.475 m by the second approach.
基金supported by NSFCs(grant Nos.41721003,41631072,41874023,41804012,41429401,41574007)
文摘Until now, the calculation of the principal inertia moment of the triaxial three-layered Earth mainly adopts the scaling method. This method assumes that the corresponding principal inertia axes of the layers coincide each other, but this is not the case. In this paper, a rigorous tensor transformation rule is adopted to calculate the principal inertia moments(PIMs) of different layers. Appling the new estimated PIMs to the triaxial three-layered Earth rotation theory with considering various couplings, the numerical calculations show that the periods of the Chandler Wobble(CW), Free Core Nutation(FCN), Free Inner Core Nutation(FICN) and Inner Core Wobble(ICW) are respectively 433.0, 430.8, 943.9 and 2735.9 mean solar days, which are well comparable with the corresponding values accepted at present in geoscience community. Better estimates of the PIMs of different layers may provide better constrains on relevant physical parameters of the Earth’s interior.
基金supported by Science for Earthquake Resilience (No. XH18030)National Natural Science Foundation of China (Grant No. 41304067, 41404015, 41504011)
文摘Using continuous 1-Hz sampling time-series recorded by a SC (superconducting gravimeter) at Hsinchu station, Taiwan of China, we investigate the anomalous gravity signals prior to 71 large earthquakes with moment magnitude larger than 7.0 (Mw7.0) occurred between 1 Jan 2008 and 31 Dec 2011. We firstly evaluate the noise level of the SC records at Hsinchu (HS) station in microseismic bands from 0.05 Hz to 0.1 Hz by computing the PSD (power spectral density) of seismically quiet days selected based on the RMS of records. Based on the analysis of the noise level and the spectral features of the seismically quiet SC records at I-IS station, we detect ACSs (anomalous gravity signals) prior to large earthquakes. We apply HHT (Hilbert-Huang transformation) to establish the TFEP (time-frequency-energy paradigms) and MS (marginal spectra) of the SC data before the large earthquakes, and the characteristics of TFEP and MS of the SCs data during the typhoon event are also analyzed. By comparing the spectral characteristics of the SCs data during seismically quiet period, three types of ACSs are found; and the occurrence rate of ACSs before 71 earthquakes is given in terms of the cases with different epicenter distance and different focal depth. The statistical results show that 56.3% of all the examined large earthquakes were preceded by AGSs; and if we constrain the epicenter distance to be smaller than 3500 km and focal depth less than 300 kin, 75.3% of the examined large earthquakes can be associated with the ACSs. Especially, we note that for all the large earthquakes occurred in the Eurasian plate in recent four years, the precursory AGSs can always be found in the SC data recorded at HS station. Our investigations suggest that the AGSs prior to large earthquakes may be related to focal depth, epicentre distance and location.
基金supported by the National Natural Science Foundation of China(42388102,42192533 and 42192531)the Special Fund of Hubei Luojia Laboratory(220100002).
文摘Since the 1950s,the length-of-day variations(DLOD)of the Earth’s rotation have received extensive attention and research in various fields,including geodynamics,geomagnetism,geodesy,seismology,geology,marine science,environmental science,and even biology and physics.Despite the abundance of related studies and notable advancements,the underlying mechanism behind the decadal changes in DLOD remains a persistent unresolved question.An essential aspect of investigating this issue lies in its potential to unveil the Earth’s core motions[1,2].Despite the presence of various hypothesized and constructed models about the Earth’s core motions,these models typically exhibit simplicity.