Suprathermal electrons are an important population of the Martian ionosphere, either produced by photoionization of atmospheric neutrals or supplied from the Solar Wind (SW). This study is dedicated to an in-depth inv...Suprathermal electrons are an important population of the Martian ionosphere, either produced by photoionization of atmospheric neutrals or supplied from the Solar Wind (SW). This study is dedicated to an in-depth investigation of the pitch angle distribution of suprathermal electrons at two representative energies, 19−55 eV and 124−356 eV, using the extensive measurements made by the Solar Wind Electron Analyzer on board the Mars Atmosphere and Volatile Evolution. Throughout the study, we focus on the overall degree of anisotropy, defined as the standard deviation of suprathermal electron intensity among different directions which is normalized by the mean omni-directional intensity. The available data reveal the following characteristics: (1) In general, low energy electrons are more isotropic than high energy electrons, and dayside electrons are more isotropic than nightside electrons;(2) On the dayside, the anisotropy increases with increasing altitude at low energies but remains roughly constant at high energies, whereas on the nightside, the anisotropy decreases with increasing altitude at all energies;(3) Electrons tend to be more isotropic in strongly magnetized regions than in weakly magnetized regions, especially on the nightside. These observations indicate that the anisotropy is a useful diagnostic of suprathermal electron transport, for which the conversion between the parallel and perpendicular momenta as required by the conservation of the first adiabatic invariant, along with the atmospheric absorption at low altitudes, are two crucial factors modulating the observed variation of the anisotropy. Our analysis also highlights the different roles on the observed anisotropy exerted by suprathermal electrons of different origins.展开更多
Non-thermal plasma(NTP)is considered to be a promising technology for the removal of volatile organic compounds;however,its application is limited by low CO_(2) selectivity and undesirable by-products.To overcome thes...Non-thermal plasma(NTP)is considered to be a promising technology for the removal of volatile organic compounds;however,its application is limited by low CO_(2) selectivity and undesirable by-products.To overcome these issues,this paper discusses the degradation of chlorobenzene(CB)in systems of NTP coupled with catalysts,and the influence of catalyst locations in the NTP was investigated.In addition,the interaction between plasma and catalyst was also explored.The results indicated that the degradability of CB was remarkably improved through the combination of NTP with catalysts,and the formation of ozone was effectively inhibited.The degradation efficiency increased from 33.9%to 79.6%at 14 kV in the NTPcatalytic system,while the ozone concentration decreased from 437 to 237 mg m^(-3),and the degradation efficiency of in plasma catalysis(IPC)systems was superior to that of the post plasma catalysis system,while the inhibition ability of ozone exhibited an opposing trend.In the IPC system,the degradation efficiency was 87.7%at 14 k V,while the ozone concentration was151 mg m^(-3).Besides,the plasma did not destroy the pore structure and crystal structure of the catalyst,but affected the surface morphology and redox performance of the catalyst.Thus,NTP coupled catalytic system could improve the degradation performance of CB.Furthermore,the plasma discharge characteristics played a major role in the NTP synergistic catalytic degradation of CB.Finally,based on the experiment analysis results,the general reaction mechanism of CB degradation in an IPC reaction system was proposed.展开更多
By releasing liquid drops in turbulent jet flows,we investigated the transformation of single drop breakup from binary to ternary and multiple.Silicone oil and deionized water were the dispersed phase and continuous p...By releasing liquid drops in turbulent jet flows,we investigated the transformation of single drop breakup from binary to ternary and multiple.Silicone oil and deionized water were the dispersed phase and continuous phase,respectively.The probability of binary,ternary,and multiple breakup of oil drops in jet flows is a function of the jet Reynolds number.To address the underlying mechanisms of this transformation of drop breakup,we performed two-dimensional particle image velocimetry(PIV)experiments of single-phase jet flows.With the combination of drop breakup phenomenon and two-dimensional PIV results in a single-phase flow field,these transformation conditions can be estimated:the capillary number ranges from 0.17 to 0.27,and the Weber number ranges from 55 to 111.展开更多
The Tibetan Plateau(TP)is an area sensitive to climate change,where the ozone distribution affects the atmospheric environment of the TP and its surrounding regions.The relatively low total column ozone over the TP in...The Tibetan Plateau(TP)is an area sensitive to climate change,where the ozone distribution affects the atmospheric environment of the TP and its surrounding regions.The relatively low total column ozone over the TP in boreal summer and its spatiotemporal variations have received extensive attention.In this study,five-year balloon-borne measurements of ozone over Lhasa in boreal summer are used to investigate the influences of the apparent heat source(Q1)on the ozone vertical structure over the plateau.The mechanisms for the above processes are also explored.The results show that the tropospheric ozone mixing ratio over Lhasa decreases when the total atmospheric Q1 in the troposphere over the TP is relatively high.Strengthened ascending motions are accompanied by enhanced Q1 over the main TP region.Consequently,the tropospheric ozone mixing ratio over Lhasa decreases when Q1 is higher in summer,which is attributed to the upward transport of the ozone-poor surface air.展开更多
Rare earth metals are strategic resources with potential applications in optics,metallurgy and catalysis.In recent years,single-atom site catalysts(SASCs) have attracted increasing attention owing to their 100%atom ef...Rare earth metals are strategic resources with potential applications in optics,metallurgy and catalysis.In recent years,single-atom site catalysts(SASCs) have attracted increasing attention owing to their 100%atom efficiency and unique catalytic performances.Over the past decade,rare earth elements,including rare earth metals and their oxides,have shown great potential in SASCs.However,systematic analyses of data are still handful.In this mini-review,the use of rare earth metals and their oxides in SASCs was summarized and the results are discussed.A particular focus was paid to the synthetic strategies,characterization of rare earth-containing SASCs,and applications as catalysis supports,promoters and active sites.Current issues faced by rare-earth metals and their oxides in SASCs,as well as future prospects were also provided.展开更多
The CeO2-V2O5-WO3/TiO2 (CeO2-VWT) catalysts were prepared by one-step and two-step impregnation methods. The effects of different loading of CeO2 and different preparation methods on De-NOx activity of catalysts had...The CeO2-V2O5-WO3/TiO2 (CeO2-VWT) catalysts were prepared by one-step and two-step impregnation methods. The effects of different loading of CeO2 and different preparation methods on De-NOx activity of catalysts had been investigated. CeO2 helped to improve the De-NOx activity and sulfur resistance. The optimal loading of CeO2 was 3% with the De-NOx efficiency reached 89.9% at 140℃. The results showed that the De-NOx activity of 3% CeO2-VWT catalysts by one-step method was the same as two-step method basically and reached the level of industrial applications, the N2 selectivity of catalysts was more than 99.2% between 110℃ and 320℃. In addition, CeO2 promoted the oxidation of NO to NO2, which adsorbed on the Lewis acid site (V5+-O) to form V5+-NO3 and inspired the fast SCR reaction. Not only the thermal stability but also the De-NOx activity of catalysts decreased with excess CeO2 competed with V2O5. Characterizations of catalysts were carried out by XRF, BET, XRD, TG and FT-IR. BET showed that the specific surface area of catalysts decreased with the loading of CeO2 increased, the active components content and specific surface area of catalysts decreased slightly after entering SO2. Ammonium sulfate species were formed in poisoned catalyst which had been investigated by XRF, BET, TG and FT-IR. The largest loss rate of weight fraction was 0.024%.℃-1 at 380℃ 390℃, which was in accordance with the decomposition temperature of NH4HSO4 and (NH4)2SO4,展开更多
基金the National Natural Science Foundation of China through grants 42241114,42274218 and 42304166the B-type Strategic Priority Program No.XDB41000000 funded by the Chinese Academy of Sciences+1 种基金the pre-research project on Civil Aerospace Technologies No.D020105 funded by China’s National Space Administration,the Guangdong Basic and Applied Research Foundation Project 2021A1515110271the Key Laboratory of Geospace Environment,Chinese Academy of Sciences,University of Science&Technology of China.
文摘Suprathermal electrons are an important population of the Martian ionosphere, either produced by photoionization of atmospheric neutrals or supplied from the Solar Wind (SW). This study is dedicated to an in-depth investigation of the pitch angle distribution of suprathermal electrons at two representative energies, 19−55 eV and 124−356 eV, using the extensive measurements made by the Solar Wind Electron Analyzer on board the Mars Atmosphere and Volatile Evolution. Throughout the study, we focus on the overall degree of anisotropy, defined as the standard deviation of suprathermal electron intensity among different directions which is normalized by the mean omni-directional intensity. The available data reveal the following characteristics: (1) In general, low energy electrons are more isotropic than high energy electrons, and dayside electrons are more isotropic than nightside electrons;(2) On the dayside, the anisotropy increases with increasing altitude at low energies but remains roughly constant at high energies, whereas on the nightside, the anisotropy decreases with increasing altitude at all energies;(3) Electrons tend to be more isotropic in strongly magnetized regions than in weakly magnetized regions, especially on the nightside. These observations indicate that the anisotropy is a useful diagnostic of suprathermal electron transport, for which the conversion between the parallel and perpendicular momenta as required by the conservation of the first adiabatic invariant, along with the atmospheric absorption at low altitudes, are two crucial factors modulating the observed variation of the anisotropy. Our analysis also highlights the different roles on the observed anisotropy exerted by suprathermal electrons of different origins.
基金supported by the National Key Research and Development Program of China(No.2018YFC1903100)Beijing Municipal Science and Technology Project Program(No.Z191100009119002)the State Environmental Protection Key Laboratory of Odor Pollution Control(No.20210504)。
文摘Non-thermal plasma(NTP)is considered to be a promising technology for the removal of volatile organic compounds;however,its application is limited by low CO_(2) selectivity and undesirable by-products.To overcome these issues,this paper discusses the degradation of chlorobenzene(CB)in systems of NTP coupled with catalysts,and the influence of catalyst locations in the NTP was investigated.In addition,the interaction between plasma and catalyst was also explored.The results indicated that the degradability of CB was remarkably improved through the combination of NTP with catalysts,and the formation of ozone was effectively inhibited.The degradation efficiency increased from 33.9%to 79.6%at 14 kV in the NTPcatalytic system,while the ozone concentration decreased from 437 to 237 mg m^(-3),and the degradation efficiency of in plasma catalysis(IPC)systems was superior to that of the post plasma catalysis system,while the inhibition ability of ozone exhibited an opposing trend.In the IPC system,the degradation efficiency was 87.7%at 14 k V,while the ozone concentration was151 mg m^(-3).Besides,the plasma did not destroy the pore structure and crystal structure of the catalyst,but affected the surface morphology and redox performance of the catalyst.Thus,NTP coupled catalytic system could improve the degradation performance of CB.Furthermore,the plasma discharge characteristics played a major role in the NTP synergistic catalytic degradation of CB.Finally,based on the experiment analysis results,the general reaction mechanism of CB degradation in an IPC reaction system was proposed.
基金financial supports from the National Key Research and Development Program of China(2016YFB0302801)National Natural Science Foundation of China(21676007)+1 种基金Fundamental Research Funds for the Central Universities(XK1802-1)Scientific Research and Technology Development Projects of China National Petroleum Corporation(2016B2605)。
文摘By releasing liquid drops in turbulent jet flows,we investigated the transformation of single drop breakup from binary to ternary and multiple.Silicone oil and deionized water were the dispersed phase and continuous phase,respectively.The probability of binary,ternary,and multiple breakup of oil drops in jet flows is a function of the jet Reynolds number.To address the underlying mechanisms of this transformation of drop breakup,we performed two-dimensional particle image velocimetry(PIV)experiments of single-phase jet flows.With the combination of drop breakup phenomenon and two-dimensional PIV results in a single-phase flow field,these transformation conditions can be estimated:the capillary number ranges from 0.17 to 0.27,and the Weber number ranges from 55 to 111.
基金This research was supported by the second Tibetan Plateau Scientific Expedition and Research Program(STEP)[grant number 2019QZKK0604]the National Natural Science Foundation of China[grant numbers 91837311,41705025,and 41705021].
文摘The Tibetan Plateau(TP)is an area sensitive to climate change,where the ozone distribution affects the atmospheric environment of the TP and its surrounding regions.The relatively low total column ozone over the TP in boreal summer and its spatiotemporal variations have received extensive attention.In this study,five-year balloon-borne measurements of ozone over Lhasa in boreal summer are used to investigate the influences of the apparent heat source(Q1)on the ozone vertical structure over the plateau.The mechanisms for the above processes are also explored.The results show that the tropospheric ozone mixing ratio over Lhasa decreases when the total atmospheric Q1 in the troposphere over the TP is relatively high.Strengthened ascending motions are accompanied by enhanced Q1 over the main TP region.Consequently,the tropospheric ozone mixing ratio over Lhasa decreases when Q1 is higher in summer,which is attributed to the upward transport of the ozone-poor surface air.
基金Project supported by the China Postdoctoral Science Foundation(2020M670355)the National Key R&D Program of China(2016YFC0204305)National Natural Science Foundation of China(21777004)。
文摘Rare earth metals are strategic resources with potential applications in optics,metallurgy and catalysis.In recent years,single-atom site catalysts(SASCs) have attracted increasing attention owing to their 100%atom efficiency and unique catalytic performances.Over the past decade,rare earth elements,including rare earth metals and their oxides,have shown great potential in SASCs.However,systematic analyses of data are still handful.In this mini-review,the use of rare earth metals and their oxides in SASCs was summarized and the results are discussed.A particular focus was paid to the synthetic strategies,characterization of rare earth-containing SASCs,and applications as catalysis supports,promoters and active sites.Current issues faced by rare-earth metals and their oxides in SASCs,as well as future prospects were also provided.
基金This work was supported by the Natural Science Foundation of Beijing, China (No. 8152011) and the Scientific Research Program of Beijing Municipal Education Commission (No. KM201510 005009).
文摘The CeO2-V2O5-WO3/TiO2 (CeO2-VWT) catalysts were prepared by one-step and two-step impregnation methods. The effects of different loading of CeO2 and different preparation methods on De-NOx activity of catalysts had been investigated. CeO2 helped to improve the De-NOx activity and sulfur resistance. The optimal loading of CeO2 was 3% with the De-NOx efficiency reached 89.9% at 140℃. The results showed that the De-NOx activity of 3% CeO2-VWT catalysts by one-step method was the same as two-step method basically and reached the level of industrial applications, the N2 selectivity of catalysts was more than 99.2% between 110℃ and 320℃. In addition, CeO2 promoted the oxidation of NO to NO2, which adsorbed on the Lewis acid site (V5+-O) to form V5+-NO3 and inspired the fast SCR reaction. Not only the thermal stability but also the De-NOx activity of catalysts decreased with excess CeO2 competed with V2O5. Characterizations of catalysts were carried out by XRF, BET, XRD, TG and FT-IR. BET showed that the specific surface area of catalysts decreased with the loading of CeO2 increased, the active components content and specific surface area of catalysts decreased slightly after entering SO2. Ammonium sulfate species were formed in poisoned catalyst which had been investigated by XRF, BET, TG and FT-IR. The largest loss rate of weight fraction was 0.024%.℃-1 at 380℃ 390℃, which was in accordance with the decomposition temperature of NH4HSO4 and (NH4)2SO4,