期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Localized salt accumulation: the main reason for cotton root length decrease during advanced growth stages under drip irrigation with mulch film in a saline soil 被引量:6
1
作者 wenxuan mai ChangYan TIAN Li LI 《Journal of Arid Land》 SCIE CSCD 2014年第3期361-370,共10页
High salinity in soil can prevent root growth of most plants. To investigate soil salinity dynamics under drip irrigation with mulch film (DI) and its effects on cotton root length, we conducted field experiments in... High salinity in soil can prevent root growth of most plants. To investigate soil salinity dynamics under drip irrigation with mulch film (DI) and its effects on cotton root length, we conducted field experiments in saline soil based on a monolith method using flooding irrigation with mulch film (FI) as a control at the Korla Experimental Station of the Xinjiang Academy of Agricultural Sciences, China in 2009 and 2010. The results showed that the total root length decreased 120 days after sowing (DAS) under DI, and was mainly centered in the 0-30 cm soil layer and at distances of 30-70 cm from the drip-lines. There was almost complete overlap in the area of root length decline and salt accumulation. In the soil depth of 0-30 cm and at distances of 30-70 cm from the drip-lines at 110 to 160 DAS in 2009 and 171 DAS in 2010, the electrical conductivity (EC) in all soil samples was at least 3 mS/cm and in some cases exceeded 5 mS/cm under DI treatment. However, EC barely exceeded 3 mS/cm and no reduction in root length was observed under FI treatment. Correlation analysis of soil EC and root length density indicated that the root length declined when the soil EC exceeded 2.8 mS/cm. The main reason for the decrease of root length in cotton under DI was localized accumulation of salinity. 展开更多
关键词 COTTON drip irrigation under mulch film flooding irrigation under mulch film root SALINITY
下载PDF
Tolerance to Zn deficiency and P-Zn interaction in wheat seedlings cultured in chelator-buffered solutions
2
作者 wenxuan mai XiaoHong TIAN +2 位作者 Willam Jeffery GALE XiWen YANG XinChun LU 《Journal of Arid Land》 SCIE 2011年第3期206-213,共8页
Zinc deficiency is a common constraint for wheat production in the regions with limited precipitation,particularly in the regions with high levels of available phosphate (P) in soil.Two experiments were conducted us... Zinc deficiency is a common constraint for wheat production in the regions with limited precipitation,particularly in the regions with high levels of available phosphate (P) in soil.Two experiments were conducted using chelator-buffered nutrient solutions to characterize differences in tolerance to Zn deficiency among three winter wheat (Triticum aestivum L).genotypes and to investigate the relationship between P and Zn nutrition in wheat species.Four indices,Zn efficiency,relative shoot-to-root ratio,total Zn uptake in shoot,and shoot dry weight were used to compare the tolerance to Zn deficiency among three wheat genotypes.The results indicated that the four indices could be used in breeding selection for Zn uptake-efficient genotypes.The genotype H6712 was the most tolerant to Zn deficient,followed by M19,and then X13.Specifically,H6712 had the highest Zn uptake efficiency among the three genotypes.The addition of P to the growth medium increased Zn uptake and translocation from roots to shoots.Total Zn content of the wheat plant was 43% higher with 0.6 mmol/L P treatment than that of control with 0 mmol /L P treatment.The Zn translocation ratios from roots to shoots were increased by 16% and 26% with 0.6 mmol/L P treatment and 3 mmol/L P treatment,respectively,compared with 0 mmol/L P treatment.In contrast,high Zn concentrations in the growth medium inhibited P translocation from roots to shoots,but the inhibitive effects were not strong.Sixty-six percent of P taken up by wheat plants was translocated to the wheat shoots at 0 μmol/L Zn treatment,while the percent was 60% at 3 μmol/L Zn treatment.The result may be due to the fact that the wheat plants need more P than Zn. 展开更多
关键词 chelator-buffered solution tolerance to Zn deficiency P and Zn interaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部