期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Three-source partitioning of soil respiration by ^(13)C natural abundance and its variation with soil depth in a plantation 被引量:3
1
作者 wenchen song Xiaojuan Tong +1 位作者 Jinsong Zhang Ping Meng 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第3期533-540,共8页
Partitioning soil respiration into three components is vital to identify CO_2 sink or source and can help us better understand soil carbon dynamics. However, knowledge about the influences of soil depth and the primin... Partitioning soil respiration into three components is vital to identify CO_2 sink or source and can help us better understand soil carbon dynamics. However, knowledge about the influences of soil depth and the priming effect on soil respiration components under field has been limited. Three components of soil respiration(root respiration, rhizomicrobial respiration and basal respiration) in a plantation in the hilly area of the North China were separated by the 13 C natural abundance method. The results showed that the average proportions of rhizomicrobial respiration, root respiration and basal respiration at the 25–65 cm depths were about 14, 23 and 63 %, respectively. Three components of soil respiration varied with soil depth, and root respiration was the main component of soil respiration in deeper soil. The priming effect was obvious for the deep soil respiration, especially at the 40–50 cm depth. Thus, depth and priming effect should be taken into account to increase the accuracy of estimations of soil carbon flux. 展开更多
关键词 土壤呼吸 土壤深度 自然丰度 人工林 分区 根际微生物 根系呼吸 启动效应
下载PDF
Climate factors affect forest biomass allocation by altering soil nutrient availability and leaf traits
2
作者 Hede Gong wenchen song +4 位作者 Jiangfeng Wang Xianxian Wang Yuhui Ji Xinyu Zhang Jie Gao 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2023年第10期2292-2303,共12页
Biomass in forests sequesters substantial amounts of carbon;although the contribution of aboveground biomass has been extensively studied, the contribution of belowground biomass remains understudied. Investigating th... Biomass in forests sequesters substantial amounts of carbon;although the contribution of aboveground biomass has been extensively studied, the contribution of belowground biomass remains understudied. Investigating the forest biomass allocation is crucial for understanding the impacts of global change on carbon allocation and cycling.Moreover, the question of how climate factors affect biomass allocation in natural and planted forests remains unresolved. Here, we addressed this question by collecting data from 384 planted forests and 541 natural forests in China. We evaluated the direct and indirect effects of climate factors on the belowground biomass proportion(BGBP). The average BGBP was 31.09% in natural forests and was significantly higher(38.75%) in planted forests. Furthermore, we observed a significant decrease in BGBP with increasing temperature and precipitation. Climate factors, particularly those affecting soil factors, such as p H,strongly affected the BGBP in natural and planted forests. Based on our results, we propose that future studies should consider the effects of forest type(natural or planted) and soil factors on BGBP. 展开更多
关键词 aboveground and belowground biomass allocation natural forest planted forest precipitation soil factors temper-ature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部