期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
三合一设计策略促进超细PtNiW@WOx核壳纳米线氢氧化电催化剂的CO耐受性 被引量:1
1
作者 刘巍 杨馥榕 +7 位作者 孙土来 黄晨明 赖文川 杜佳峰 叶进裕 曾昱嘉 高磊 黄宏文 《Science China Materials》 SCIE EI CAS CSCD 2024年第6期1866-1875,共10页
铂(Pt)是质子交换膜燃料电池(PEMFCs)阳极氢氧化反应(HOR)中最先进的电催化剂.然而,Pt催化剂对CO(工业低成本氢燃料中的杂质)极度敏感从而中毒,这会引起器件性能的急剧衰退,导致器件运行成本高.因此,提高Pt催化剂的CO耐受性对PEMFCs的... 铂(Pt)是质子交换膜燃料电池(PEMFCs)阳极氢氧化反应(HOR)中最先进的电催化剂.然而,Pt催化剂对CO(工业低成本氢燃料中的杂质)极度敏感从而中毒,这会引起器件性能的急剧衰退,导致器件运行成本高.因此,提高Pt催化剂的CO耐受性对PEMFCs的商业化推广至关重要.在此,我们设计合成了一种独特的PtNiW@WO_(x)核壳纳米线来提高Pt基催化剂对CO的耐受能力.机理研究表明,表面无定形的WO_(x)壳层可以作为分子围栏,在动力学上阻碍CO扩散到达Pt位点.在热力学上,Ni和W元素合金化产生的电子效应可以使Pt的d带中心降低,减弱CO在Pt位点上的化学吸附.此外,亲氧W元素可以加速水的解离,提供更多OH活性物种,促进CO的氧化脱附.因此,在1000ppm CO/H_(2)条件下,所设计的PtNiW@WO_(x)核壳纳米线催化剂表现出优异的HOR抗CO中毒性能,在4000 s后仍能保持超过90%的HOR电流密度,超过了原始的PtNi纳米线和目前报道的绝大多数Pt基催化剂. 展开更多
关键词 hydrogen oxidation reaction Pt-based electrocatalyst CO tolerant fuel cell catalyst design
原文传递
Tuning the reaction path of CO_(2) electroreduction reaction on indium single-atom catalyst:Insights into the active sites 被引量:9
2
作者 Jiawei Zhang Gangming Zeng +6 位作者 Lanlan Chen wenchuan lai Yuliang Yuan Yangfan Lu Chao Ma Wenhua Zhang Hongwen Huang 《Nano Research》 SCIE EI CSCD 2022年第5期4014-4022,共9页
Modulating the local coordination structure of metal single-atom catalysts(SACs)is extensively employed to tune the catalytic activity,but rarely involved in regulating the reaction pathway which fundamentally determi... Modulating the local coordination structure of metal single-atom catalysts(SACs)is extensively employed to tune the catalytic activity,but rarely involved in regulating the reaction pathway which fundamentally determines the product selectivity.Herein,we report that the product selectivity of electrochemical CO_(2)reduction(CO_(2)RR)on the single-atom indium-NxC4-x(1≤x≤4)catalysts could be tuned from formate to CO by varying the carbon and nitrogen occupations in the first coordination sphere.Surprisingly,the optimal In SAC showed great promise for CO production with the maximum Faradic efficiency of 97%,greatly different from the reported In-based catalysts where the formate is the dominant product.Combined experimental verifications and theoretical simulations reveal that the selectivity switch from formate to CO on In SACs originates from active sites shift from indium center to the indium-adjacent carbon atom,where the indium site favors formate formation and the indium-adjacent carbon site prefers the CO pathway.The present work suggests the active sites in metal SACs may shift from the widely accepted metal center to surrounding carbon atoms,thereby offering a new implication to revisit the active sites for metal SACs. 展开更多
关键词 CO_(2)reduction single atom catalysts coordination structure product selectivity active sites shift
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部