Melting of subducting oceanic lithosphere and associated melt-mantle interactions in convergent plate margins require specific geodynamic environment that allows the oceanic slab to be abnormally heated.Here we focus ...Melting of subducting oceanic lithosphere and associated melt-mantle interactions in convergent plate margins require specific geodynamic environment that allows the oceanic slab to be abnormally heated.Here we focus on the Early Mesozoic mafic rocks and granite porphyry,which provide insights into slab melting processes associated with final closure of the Paleo-Asian Ocean.The granite porphyry samples are calc-alkaline and distinguished by high Sr contents,strong depletion of heavy rare earth elements,resulting in high(La/Yb);and Sr/Y ratios,and negligible Eu anomalies.Based on their high Na_(2)O and Mg O,low K_(2)O contents,positiveε_(Hf)(t)andε_(Nd)(t)and low(^(87)Sr/^(86)Sr)ivalues,we propose that the granite porphyry was likely derived from partial melting of subducting Paleo-Asian oceanic crust.The Nb-enriched mafic rocks are enriched in Rb,Th,U,Pb and K,and depleted in Nb,Ta,Ba,P and Ti,corroborating a subduction-related origin.Their heterogeneous Sr-Nd-Hf-O isotopic compositions and other geochemical features suggest that they were likely derived from partial melting of peridotitic mantle wedge interacted with oceanic slab-derived adakitic melts.Trace element and isotope modeling results and elevated zirconδ^(18)O values suggest variable subducting sediments input into the mantle wedge,dominated by terrigenous sediments.Synthesizing the widely-developed bimodal rock associations,conjugated dikes,thermal metamorphism,tectonic characteristics,paleomagnetic constraints,and paleogeographical evidence along the Solonke-Changchun suture zone,we identify a slab window triggered by slab break-off,which accounts for slab melting and formation of the Nb-enriched mafic rocks and associated adakitic granite porphyry in southeastern Central Asian Orogenic Belt.展开更多
This paper presents a review on the rock associations, geochemistry, and spatial distribution of Mesozoic-Paleogene igneous rocks in Northeast Asia. The record of magmatism is used to evaluate the spatial-temporal ext...This paper presents a review on the rock associations, geochemistry, and spatial distribution of Mesozoic-Paleogene igneous rocks in Northeast Asia. The record of magmatism is used to evaluate the spatial-temporal extent and influence of multiple tectonic regimes during the Mesozoic, as well as the onset and history of Paleo-Pacific slab subduction beneath Eurasian continent. Mesozoic-Paleogene magmatism at the continental margin of Northeast Asia can be subdivided into nine stages that took place in the Early-Middle Triassic, Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, Late Cretaceous, and Paleogene, respectively. The Triassic magmatism is mainly composed of adakitic rocks,bimodal rocks, alkaline igneous rocks, and A-type granites and rhyolites that formed in syn-collisional to post-collisional extensional settings related to the final closure of the Paleo-Asian Ocean. However, Triassic calc-alkaline igneous rocks in the Erguna-Xing'an massifs were associated with the southward subduction of the Mongol-Okhotsk oceanic slab. A passive continental margin setting existed in Northeast Asia during the Triassic. Early Jurassic calc-alkaline igneous rocks have a geochemical affinity to arc-like magmatism, whereas coeval intracontinental magmatism is composed of bimodal igneous rocks and A-type granites. Spatial variations in the potassium contents of Early Jurassic igneous rocks from the continental margin to intracontinental region, together with the presence of an Early Jurassic accretionary complex, reveal that the onset of the PaleoPacific slab subduction beneath Eurasian continent occurred in the Early Jurassic. Middle Jurassic to early Early Cretaceous magmatism did not take place at the continental margin of Northeast Asia. This observation, combined with the occurrence of low-altitude biological assemblages and the age population of detrital zircons in an Early Cretaceous accretionary complex,indicates that a strike-slip tectonic regime existed between the continental margin and Paleo-Pacific slab during the Middle Jurassic to early Early Cretaceous. The widespread occurrence of late Early Cretaceous calc-alkaline igneous rocks, I-type granites, and adakitic rocks suggests low-angle subduction of the Paleo-Pacific slab beneath Eurasian continent at this time. The eastward narrowing of the distribution of igneous rocks from the Late Cretaceous to Paleogene, and the change from an intracontinental to continental margin setting, suggest the eastward movement of Eurasian continent and rollback of the PaleoPacific slab at this time.展开更多
We present detailed geochronological,geochemical,and zircon Hf isotopic data for Late Paleozoic granitic rocks from Handagai and Zhonghe plutons in the Xing’an Block,NE China,aiming to provide constraints on their or...We present detailed geochronological,geochemical,and zircon Hf isotopic data for Late Paleozoic granitic rocks from Handagai and Zhonghe plutons in the Xing’an Block,NE China,aiming to provide constraints on their origin and tectonic implications.New zircon U-Pb ages indicate they were formed in the Late Devonian(ca.379 Ma) immediately after a striking 50 Ma magmatic lull(ca.430-380 Ma) in the Xing ’ an Block.Petrological and geochemical features suggest that the Handagai monzogranites and Zhonghe alkali-feldspar granites are I- and A-type granites,respectively,although both of them have high-K calc-alkaline features and positive zircon ε_(Hf)(t) values(+3.47 to +10.77).We infer that the Handagai monzogranites were produced by partial melting of juvenile basaltic crustal materials under a pressure of <8-10 kbar,whereas the Zhonghe alkali-feldspar granites were generated by partial melting of juvenile felsic crustal materials at shallower depths(P ≤ 4 kbar).Our results,together with published regional data,indicate their generation involves a subduction-related extensional setting.Slab break-off of the Hegenshan-Heihe oceanic plate may account for the subduction-related extensional setting,as well as the transformation of arc magmatism from the Early-Middle Devonian lull to the Late Devonian-Early Carboniferous flare-up in the Xing’an Block.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant 41872056)Graduate Innovation Fund of Jilin University(Grant No.101832020CX196)。
文摘Melting of subducting oceanic lithosphere and associated melt-mantle interactions in convergent plate margins require specific geodynamic environment that allows the oceanic slab to be abnormally heated.Here we focus on the Early Mesozoic mafic rocks and granite porphyry,which provide insights into slab melting processes associated with final closure of the Paleo-Asian Ocean.The granite porphyry samples are calc-alkaline and distinguished by high Sr contents,strong depletion of heavy rare earth elements,resulting in high(La/Yb);and Sr/Y ratios,and negligible Eu anomalies.Based on their high Na_(2)O and Mg O,low K_(2)O contents,positiveε_(Hf)(t)andε_(Nd)(t)and low(^(87)Sr/^(86)Sr)ivalues,we propose that the granite porphyry was likely derived from partial melting of subducting Paleo-Asian oceanic crust.The Nb-enriched mafic rocks are enriched in Rb,Th,U,Pb and K,and depleted in Nb,Ta,Ba,P and Ti,corroborating a subduction-related origin.Their heterogeneous Sr-Nd-Hf-O isotopic compositions and other geochemical features suggest that they were likely derived from partial melting of peridotitic mantle wedge interacted with oceanic slab-derived adakitic melts.Trace element and isotope modeling results and elevated zirconδ^(18)O values suggest variable subducting sediments input into the mantle wedge,dominated by terrigenous sediments.Synthesizing the widely-developed bimodal rock associations,conjugated dikes,thermal metamorphism,tectonic characteristics,paleomagnetic constraints,and paleogeographical evidence along the Solonke-Changchun suture zone,we identify a slab window triggered by slab break-off,which accounts for slab melting and formation of the Nb-enriched mafic rocks and associated adakitic granite porphyry in southeastern Central Asian Orogenic Belt.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41330206 & 41702051)the National Key Research and Development Project (Grant No. 2016YFC0600403)the China Postdoctoral Science Foundation (Grant Nos. 2017T100204 & 2017M611314)
文摘This paper presents a review on the rock associations, geochemistry, and spatial distribution of Mesozoic-Paleogene igneous rocks in Northeast Asia. The record of magmatism is used to evaluate the spatial-temporal extent and influence of multiple tectonic regimes during the Mesozoic, as well as the onset and history of Paleo-Pacific slab subduction beneath Eurasian continent. Mesozoic-Paleogene magmatism at the continental margin of Northeast Asia can be subdivided into nine stages that took place in the Early-Middle Triassic, Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, Late Cretaceous, and Paleogene, respectively. The Triassic magmatism is mainly composed of adakitic rocks,bimodal rocks, alkaline igneous rocks, and A-type granites and rhyolites that formed in syn-collisional to post-collisional extensional settings related to the final closure of the Paleo-Asian Ocean. However, Triassic calc-alkaline igneous rocks in the Erguna-Xing'an massifs were associated with the southward subduction of the Mongol-Okhotsk oceanic slab. A passive continental margin setting existed in Northeast Asia during the Triassic. Early Jurassic calc-alkaline igneous rocks have a geochemical affinity to arc-like magmatism, whereas coeval intracontinental magmatism is composed of bimodal igneous rocks and A-type granites. Spatial variations in the potassium contents of Early Jurassic igneous rocks from the continental margin to intracontinental region, together with the presence of an Early Jurassic accretionary complex, reveal that the onset of the PaleoPacific slab subduction beneath Eurasian continent occurred in the Early Jurassic. Middle Jurassic to early Early Cretaceous magmatism did not take place at the continental margin of Northeast Asia. This observation, combined with the occurrence of low-altitude biological assemblages and the age population of detrital zircons in an Early Cretaceous accretionary complex,indicates that a strike-slip tectonic regime existed between the continental margin and Paleo-Pacific slab during the Middle Jurassic to early Early Cretaceous. The widespread occurrence of late Early Cretaceous calc-alkaline igneous rocks, I-type granites, and adakitic rocks suggests low-angle subduction of the Paleo-Pacific slab beneath Eurasian continent at this time. The eastward narrowing of the distribution of igneous rocks from the Late Cretaceous to Paleogene, and the change from an intracontinental to continental margin setting, suggest the eastward movement of Eurasian continent and rollback of the PaleoPacific slab at this time.
基金financially supported by the National Natural Science Foundation of China(No.41872056)the China Postdoctoral Science Foundation(Nos.2020M681037 and 2021T140252)。
文摘We present detailed geochronological,geochemical,and zircon Hf isotopic data for Late Paleozoic granitic rocks from Handagai and Zhonghe plutons in the Xing’an Block,NE China,aiming to provide constraints on their origin and tectonic implications.New zircon U-Pb ages indicate they were formed in the Late Devonian(ca.379 Ma) immediately after a striking 50 Ma magmatic lull(ca.430-380 Ma) in the Xing ’ an Block.Petrological and geochemical features suggest that the Handagai monzogranites and Zhonghe alkali-feldspar granites are I- and A-type granites,respectively,although both of them have high-K calc-alkaline features and positive zircon ε_(Hf)(t) values(+3.47 to +10.77).We infer that the Handagai monzogranites were produced by partial melting of juvenile basaltic crustal materials under a pressure of <8-10 kbar,whereas the Zhonghe alkali-feldspar granites were generated by partial melting of juvenile felsic crustal materials at shallower depths(P ≤ 4 kbar).Our results,together with published regional data,indicate their generation involves a subduction-related extensional setting.Slab break-off of the Hegenshan-Heihe oceanic plate may account for the subduction-related extensional setting,as well as the transformation of arc magmatism from the Early-Middle Devonian lull to the Late Devonian-Early Carboniferous flare-up in the Xing’an Block.