期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
3D printed-electrospun PCL/hydroxyapatite/MWCNTs scaffolds for the repair of subchondral bone
1
作者 Yanyan Cao Lei Sun +4 位作者 Zixian Liu Zhizhong Shen wendan jia Peiyi Hou Shengbo Sang 《Regenerative Biomaterials》 SCIE EI 2023年第1期294-305,共12页
Osteochondral defect caused by trauma or osteoarthritis exhibits a major challenge in clinical treatment with limited symptomatic effects at present.The regeneration and remodeling of subchondral bone play a positive ... Osteochondral defect caused by trauma or osteoarthritis exhibits a major challenge in clinical treatment with limited symptomatic effects at present.The regeneration and remodeling of subchondral bone play a positive effect on cartilage regeneration and further promotes the repair of osteochondral defects.Making use of the strengths of each preparation method,the combination of 3D printing and electrospinning is a promising method for designing and constructing multi-scale scaffolds that mimic the complexity and hierarchical structure of subchondral bone at the microscale and nanoscale,respectively.In this study,the 3D printed-electrospun poly(ɛ-caprolactone)/nano-hydroxyapatites/multi-walled carbon nanotubes(PCL/nHA/MWCNTs)scaffolds were successfully constructed by the combination of electrospinning and layer-by-layer 3D printing.The resulting dual-scale scaffold consisted of a dense layer of disordered nanospun fibers and a porous microscale 3D scaffold layer to support and promote the ingrowth of subchondral bone.Herein,the biomimetic PCL/nHA/MWCNTs scaffolds enhanced cell seeding efficiency and allowed for higher cell-cell interactions that supported the adhesion,proliferation,activity,morphology and subsequently improved the osteogenic differentiation of bone marrow mesenchymal stem cells in vitro.Together,this study elucidates that the construction of 3D printed-electrospun PCL/nHA/MWCNTs scaffolds provides an alternative strategy for the regeneration of subchondral bone and lays a foundation for subsequent in vivo studies. 展开更多
关键词 additive manufacturing 3D printing electrospinning subchondral bone
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部