The interplay between multi-atom assembly configurations and single atoms(SAs)has been gaining attention in research.However,the effect of long-term range interactions between SAs and multi-atom assemblies on the orbi...The interplay between multi-atom assembly configurations and single atoms(SAs)has been gaining attention in research.However,the effect of long-term range interactions between SAs and multi-atom assemblies on the orbital filling characteristics has yet to be investigated.In this context,we introduced copper(Cu)doping to strengthen the interaction between cobalt(Co)nanoparticles(NPs)and Co SAs by promoting the spontaneous formation of Co-Cu alloy NPs that tends toward aggregation owing to its negative cohesive energy(-0.06454),instead of forming Cu SAs.The incorporation of Cu within the Co-Cu alloy NPs,compared to the pure Co NPs,significantly expedites the kinetics of peroxymonosulfate(PMS)oxidation processes on Co SAs.Unlike Co NPs,Co-Cu NPs facilitate electron rearrangement in the d orbitals(especially dz^(2)and dxz)near the Fermi level in Co SAs,thereby optimizing the dz^(2)-O(PMS)and dxz-O(SO_(5)^(-))orbital interaction.Eventually,the Co-Cu alloy NPs embedded in nitrogen-doped carbon(CC@CNC)catalysts rapidly eliminated 80.67% of 20 mg L^(-1)carbamazepine(CBZ)within 5 min.This performance significantly surpasses that of catalysts consisting solely of Co NPs in a similar matrix(C@CNC),which achieved a 58.99% reduction in 5 min.The quasi in situ characterization suggested that PMS acts as an electron donor and will transfer electrons to Co SAs,generating^(1)O_(2)for contaminant abatement.This study offers valuable insights into the mechanisms by which composite active sites formed through multi-atom assembly interact at the atomic orbital level to achieve high-efficiency PMS-based advanced oxidation processes at the atomic orbital level.展开更多
基金supported by the Ministry of Science and Technology of People’s Republic of China as a Key Technology Research and Development Program Project(2023YFC3709001 and2019YFC1804104)the Ministry of Education of People’s Republic of China as a Discipline Innovation and Intelligence Introduction Project(B17025)+3 种基金the National Natural Science Foundation of China as a Shandong Joint Fund Project(U1906222)the Tianjin Science and Technology Bureau as a Key Science and Technology Supporting Project(19YFZCSF00920)the Shiyanjia Lab(www.shiyanjia.com)for the support of experimental analysesApplied Chemistry and Engineering Institute(Nankai University)for the instrument support of ACTEM(JEM-ARM200F)。
文摘The interplay between multi-atom assembly configurations and single atoms(SAs)has been gaining attention in research.However,the effect of long-term range interactions between SAs and multi-atom assemblies on the orbital filling characteristics has yet to be investigated.In this context,we introduced copper(Cu)doping to strengthen the interaction between cobalt(Co)nanoparticles(NPs)and Co SAs by promoting the spontaneous formation of Co-Cu alloy NPs that tends toward aggregation owing to its negative cohesive energy(-0.06454),instead of forming Cu SAs.The incorporation of Cu within the Co-Cu alloy NPs,compared to the pure Co NPs,significantly expedites the kinetics of peroxymonosulfate(PMS)oxidation processes on Co SAs.Unlike Co NPs,Co-Cu NPs facilitate electron rearrangement in the d orbitals(especially dz^(2)and dxz)near the Fermi level in Co SAs,thereby optimizing the dz^(2)-O(PMS)and dxz-O(SO_(5)^(-))orbital interaction.Eventually,the Co-Cu alloy NPs embedded in nitrogen-doped carbon(CC@CNC)catalysts rapidly eliminated 80.67% of 20 mg L^(-1)carbamazepine(CBZ)within 5 min.This performance significantly surpasses that of catalysts consisting solely of Co NPs in a similar matrix(C@CNC),which achieved a 58.99% reduction in 5 min.The quasi in situ characterization suggested that PMS acts as an electron donor and will transfer electrons to Co SAs,generating^(1)O_(2)for contaminant abatement.This study offers valuable insights into the mechanisms by which composite active sites formed through multi-atom assembly interact at the atomic orbital level to achieve high-efficiency PMS-based advanced oxidation processes at the atomic orbital level.