The discovery of 2D organic semiconductors of atomically thin structures has attracted great attention due to their emerging optical, electronic, optoelectronic and mechatronic properties. Recent progress in such orga...The discovery of 2D organic semiconductors of atomically thin structures has attracted great attention due to their emerging optical, electronic, optoelectronic and mechatronic properties. Recent progress in such organic nanostructures has opened new opportunities for engineering material properties in many ways, such as, 0D/1D/2D nanoparticles hybridization, strain engineering, atomic doping etc. Moreover, 2D organic nanostructures exhibit a unique feature of bio–functionality and are highly sensitive to bio-analytes. Such peculiar behavior in 2D organics can be utilized to design highly-efficient bio-sensors. Also, a bio-molecular integrated electronic/optoelectronic device with enhanced performance can be attained. Furthermore, the bio-degradable, biocompatible, biometabolizable, non-toxic behaviour and natural origin of organic nanomaterials can address the current ecological concerns of increasing inorganic material based electronic waste. This review highlights the benefits of 2D organic semiconductors. Considering the importance of strategic techniques for growing thin 2D organic layers,this review summarizes progress towards this direction. The possible challenges for long-time stability and future research directions in 2D organic nano electronics/optoelectronics are also discussed. We believe that this review article provides immense research interests in organic 2D nanotechnology for exploiting green technologies in the future.展开更多
Nano-biotechnology research has become extremely important due to the possibilities in manipulation and characterization of biological molecules through nanodevices.Nanomaterials exhibit exciting electrical,optoelectr...Nano-biotechnology research has become extremely important due to the possibilities in manipulation and characterization of biological molecules through nanodevices.Nanomaterials exhibit exciting electrical,optoelectronic,magnetic,mechanical and chemical properties that can be exploited to develop efficient biosensors or bio-probes.Those unique properties in nanomaterials can also be used in bioimaging and cancer therapeutics,where biomolecules influence the inherent properties in nanomaterials.Effective manipulation of nanomaterial properties can lead to many breakthroughs in nanotechnology applications.Nowadays,2D nanomaterials have emerged as viable materials for nanotechnology.Large cross-section area and functional availability of 2D or 1D quantum limit in these nanomaterials allow greater flexibility and better nanodevice performance.2D nanomaterials enable advanced bioelectronics to be more easily integrated due to their atomic thickness,biocompatibility,mechanical flexibility and conformity.Furthermore,with the development of 2D material heterostructures,enhanced material properties can be obtained which can directly influence bio-nanotechnology applications.This article firstly reviews the development of various types of 2D heterostructures in a wide variety of nano-biotechnology applications.Furthermore,future 2D heterostructure scopes in bioimaging,nanomedicine,bio-markers/therapy and bioelectronics are discussed.This paper can be an avenue for providing a wide scope for 2D van der Waals(vdWs)heterostructures in bio-and medical fields.展开更多
基金financial support from National Science Foundation China (No. 61775147)Australian Research Council (ARC) No. DP180103238
文摘The discovery of 2D organic semiconductors of atomically thin structures has attracted great attention due to their emerging optical, electronic, optoelectronic and mechatronic properties. Recent progress in such organic nanostructures has opened new opportunities for engineering material properties in many ways, such as, 0D/1D/2D nanoparticles hybridization, strain engineering, atomic doping etc. Moreover, 2D organic nanostructures exhibit a unique feature of bio–functionality and are highly sensitive to bio-analytes. Such peculiar behavior in 2D organics can be utilized to design highly-efficient bio-sensors. Also, a bio-molecular integrated electronic/optoelectronic device with enhanced performance can be attained. Furthermore, the bio-degradable, biocompatible, biometabolizable, non-toxic behaviour and natural origin of organic nanomaterials can address the current ecological concerns of increasing inorganic material based electronic waste. This review highlights the benefits of 2D organic semiconductors. Considering the importance of strategic techniques for growing thin 2D organic layers,this review summarizes progress towards this direction. The possible challenges for long-time stability and future research directions in 2D organic nano electronics/optoelectronics are also discussed. We believe that this review article provides immense research interests in organic 2D nanotechnology for exploiting green technologies in the future.
基金support from Australian Research Council(ARC)(No.DP180103238)the National Natural Science Foundation of China(Nos.61904113 and 61775147)Science and Technology Innovation Commission Shenzhen(No.JCYJ20180305125616770).
文摘Nano-biotechnology research has become extremely important due to the possibilities in manipulation and characterization of biological molecules through nanodevices.Nanomaterials exhibit exciting electrical,optoelectronic,magnetic,mechanical and chemical properties that can be exploited to develop efficient biosensors or bio-probes.Those unique properties in nanomaterials can also be used in bioimaging and cancer therapeutics,where biomolecules influence the inherent properties in nanomaterials.Effective manipulation of nanomaterial properties can lead to many breakthroughs in nanotechnology applications.Nowadays,2D nanomaterials have emerged as viable materials for nanotechnology.Large cross-section area and functional availability of 2D or 1D quantum limit in these nanomaterials allow greater flexibility and better nanodevice performance.2D nanomaterials enable advanced bioelectronics to be more easily integrated due to their atomic thickness,biocompatibility,mechanical flexibility and conformity.Furthermore,with the development of 2D material heterostructures,enhanced material properties can be obtained which can directly influence bio-nanotechnology applications.This article firstly reviews the development of various types of 2D heterostructures in a wide variety of nano-biotechnology applications.Furthermore,future 2D heterostructure scopes in bioimaging,nanomedicine,bio-markers/therapy and bioelectronics are discussed.This paper can be an avenue for providing a wide scope for 2D van der Waals(vdWs)heterostructures in bio-and medical fields.