China has set up its ambitious carbon neutrality target,which mainly relies on significant energy-related carbon emissions reduction.As the largest important contributing sector,power sector must achieve energy transi...China has set up its ambitious carbon neutrality target,which mainly relies on significant energy-related carbon emissions reduction.As the largest important contributing sector,power sector must achieve energy transition,in which critical minerals will play an essential role.However,the potential supply and demand for these minerals are uncertain.This study aims to predict the cumulative demand for critical minerals in the power sector under different scenarios via dynamic material flow analysis(DMFA),including total demands,supplies and production capacities of different minerals.Then,these critical minerals are categorized into superior and scarce resources for further analysis so that more detailed results can be obtained.Results present that the total minerals supply will not meet the total minerals demand(74260 kt)in 2060.Serious resource shortages will occur for several key minerals,such as Cr,Cu,Mn,Ag,Te,Ga,and Co.In addition,the demand for renewable energy will be nearly fifty times higher than that of fossil fuels energy,implying more diversified demands for various minerals.Finally,several policy recommendations are proposed to help improve the overall resource efficiency,such as strategic reserves,material substitutions,and circular economy.展开更多
Transmission infrastructure is an integral component of safeguarding the stability of electricity delivery. However, existing studies of transmission infra- structure mostly rely on a simple review of the network, whi...Transmission infrastructure is an integral component of safeguarding the stability of electricity delivery. However, existing studies of transmission infra- structure mostly rely on a simple review of the network, while the analysis of investments remains rudimentary. This study conducted the first regionally focused analysis of investments in transmission infrastructure in China to help optimize its structure and reduce investment costs. Using State Grid data, the investment costs, under various voltages, for transmission lines and transformer substa- tions are calculated. By analyzing the regional profile of cumulative investment in transmission infrastructure, we assess correlations between investment, population, and economic development across the regions. The recent development of ultra-high-voltage transmission networks will provide policy-makers new options for policy development.展开更多
基金This work was supported by the National Key R&D Program of China(Grant No.2019YFC1908501)the National Natural Science Foundation of China(Grants No.72088101,71904125,71810107001,and 71690241)。
文摘China has set up its ambitious carbon neutrality target,which mainly relies on significant energy-related carbon emissions reduction.As the largest important contributing sector,power sector must achieve energy transition,in which critical minerals will play an essential role.However,the potential supply and demand for these minerals are uncertain.This study aims to predict the cumulative demand for critical minerals in the power sector under different scenarios via dynamic material flow analysis(DMFA),including total demands,supplies and production capacities of different minerals.Then,these critical minerals are categorized into superior and scarce resources for further analysis so that more detailed results can be obtained.Results present that the total minerals supply will not meet the total minerals demand(74260 kt)in 2060.Serious resource shortages will occur for several key minerals,such as Cr,Cu,Mn,Ag,Te,Ga,and Co.In addition,the demand for renewable energy will be nearly fifty times higher than that of fossil fuels energy,implying more diversified demands for various minerals.Finally,several policy recommendations are proposed to help improve the overall resource efficiency,such as strategic reserves,material substitutions,and circular economy.
基金Acknowledgements This research is supported by the National Key Basic Research Program of China (No. 2012CB955802), the National Natural Science Foundation of China (Grant Nos. 51579004, 11272012, and 41171099) and the Project of Humanities and Social Sciences of Ministry of Education of China (No. 14YJC790136).
文摘Transmission infrastructure is an integral component of safeguarding the stability of electricity delivery. However, existing studies of transmission infra- structure mostly rely on a simple review of the network, while the analysis of investments remains rudimentary. This study conducted the first regionally focused analysis of investments in transmission infrastructure in China to help optimize its structure and reduce investment costs. Using State Grid data, the investment costs, under various voltages, for transmission lines and transformer substa- tions are calculated. By analyzing the regional profile of cumulative investment in transmission infrastructure, we assess correlations between investment, population, and economic development across the regions. The recent development of ultra-high-voltage transmission networks will provide policy-makers new options for policy development.