期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于逻辑回归模型的泥石流易发性评价与检验:以金沙江上游奔子栏—昌波河段为例 被引量:16
1
作者 吴赛儿 陈剑 +2 位作者 zhou wendy 高玉欣 徐能雄 《现代地质》 CAS CSCD 北大核心 2018年第3期611-622,共12页
基于地理信息系统(Arc GIS10.0)平台和小流域单元,采用逻辑回归(LR)模型对金沙江上游(奔子栏—昌波河段)干热河谷区进行泥石流易发性评价,并对预测结果进行总体检验与随机个案检验。评价与检验结果表明,得到的最优指标组合下LR评价模型... 基于地理信息系统(Arc GIS10.0)平台和小流域单元,采用逻辑回归(LR)模型对金沙江上游(奔子栏—昌波河段)干热河谷区进行泥石流易发性评价,并对预测结果进行总体检验与随机个案检验。评价与检验结果表明,得到的最优指标组合下LR评价模型的AUC值为82.7%;预测的极高易发区、高易发区面积合占全区面积的35.98%,实发泥石流面积占泥石流总面积的65.03%;在个案检验中,位于各等级分区的检验组样本实发泥石流比例随着分区易发性等级降低,依次为91.7%(极高)、75.0%(高)、36.4%(中等)、16.7%(低)、0(极低),表明评价效果良好。研究区泥石流集中发育于金沙江沿岸的东北部、中部和西南部,主导性的评价指标依次为距主干道路距离、岩性、距断裂带距离、雨季月平均降雨量。人类活动与季节性降雨为研究区干热河谷泥石流的主要诱发条件。基于逻辑回归模型的泥石流易发性评价方法提高了泥石流发生可能性的预测精度,可为干热河谷区泥石流预测预警和防治提供参考依据。 展开更多
关键词 干热河谷区 泥石流 逻辑回归模型 易发性评价 金沙江
下载PDF
Effectiveness of predicting tunneling-induced ground settlements using machine learning methods with small datasets 被引量:8
2
作者 Linan Liu wendy zhou Marte Gutierrez 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1028-1041,共14页
Prediction of tunneling-induced ground settlements is an essential task,particularly for tunneling in urban settings.Ground settlements should be limited within a tolerable threshold to avoid damages to aboveground st... Prediction of tunneling-induced ground settlements is an essential task,particularly for tunneling in urban settings.Ground settlements should be limited within a tolerable threshold to avoid damages to aboveground structures.Machine learning(ML)methods are becoming popular in many fields,including tunneling and underground excavations,as a powerful learning and predicting technique.However,the available datasets collected from a tunneling project are usually small from the perspective of applying ML methods.Can ML algorithms effectively predict tunneling-induced ground settlements when the available datasets are small?In this study,seven ML methods are utilized to predict tunneling-induced ground settlement using 14 contributing factors measured before or during tunnel excavation.These methods include multiple linear regression(MLR),decision tree(DT),random forest(RF),gradient boosting(GB),support vector regression(SVR),back-propagation neural network(BPNN),and permutation importancebased BPNN(PI-BPNN)models.All methods except BPNN and PI-BPNN are shallow-structure ML methods.The effectiveness of these seven ML approaches on small datasets is evaluated using model accuracy and stability.The model accuracy is measured by the coefficient of determination(R2)of training and testing datasets,and the stability of a learning algorithm indicates robust predictive performance.Also,the quantile error(QE)criterion is introduced to assess model predictive performance considering underpredictions and overpredictions.Our study reveals that the RF algorithm outperforms all the other models with the highest model prediction accuracy(0.9)and stability(3.0210^(-27)).Deep-structure ML models do not perform well for small datasets with relatively low model accuracy(0.59)and stability(5.76).The PI-BPNN architecture is proposed and designed for small datasets,showing better performance than typical BPNN.Six important contributing factors of ground settlements are identified,including tunnel depth,the distance between tunnel face and surface monitoring points(DTM),weighted average soil compressibility modulus(ACM),grouting pressure,penetrating rate and thrust force. 展开更多
关键词 Ground settlements TUNNELING Machine learning Small dataset Model accuracy Model stability Feature importance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部