期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An Urban Road Risk Assessment Framework Based on Convolutional Neural Networks 被引量:1
1
作者 Juncai Jiang Fei Wang +4 位作者 Yizhao Wang Wenyu Jiang Yuming Qiao wenfeng bai Xinxin Zheng 《International Journal of Disaster Risk Science》 SCIE CSCD 2023年第3期475-487,共13页
In contemporary cities,road collapse is one of the most common disasters.This study proposed a framework for assessing the risk of urban road collapse.The framework first established a risk indicator system that combi... In contemporary cities,road collapse is one of the most common disasters.This study proposed a framework for assessing the risk of urban road collapse.The framework first established a risk indicator system that combined environmental and anthropogenic factors,such as soil type,pipeline,and construction,as well as other indicators.Second,an oversampling technique was used to create the dataset.The framework then constructed and trained a convolutional neural network(CNN)-based model for risk assessment.The experimental results show that the CNN model(accuracy:0.97,average recall:0.91)outperformed other models.The indicator contribution analysis revealed that the distance between the road and the construction site(contribution:0.132)and the size of the construction(contribution:0.144)are the most significant factors contributing to road collapse.According to the natural breaks,a road collapse risk map of Foshan City,Guangdong Province,was created,and the risk level was divided into five categories.Nearly 3%of the roads in the study area are at very high risk,and 6%are at high risk levels,with the high risk roads concentrated in the east and southeast.The risk map produced by this study can be utilized by local authorities and policymakers to help maintain road safety. 展开更多
关键词 Convolutional neural networks Data augmentation Risk assessment Urban road collapse
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部