期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
纳米多孔介质中的流体流动
1
作者 Weiyao Zhu Bin Pan +4 位作者 Zhen Chen wengang bu Qipeng Ma Kai Liu Ming Yue 《Engineering》 SCIE EI CAS CSCD 2024年第1期138-151,共14页
Fluid flow at nanoscale is closely related to many areas in nature and technology(e.g.,unconventional hydrocarbon recovery,carbon dioxide geo-storage,underground hydrocarbon storage,fuel cells,ocean desalination,and b... Fluid flow at nanoscale is closely related to many areas in nature and technology(e.g.,unconventional hydrocarbon recovery,carbon dioxide geo-storage,underground hydrocarbon storage,fuel cells,ocean desalination,and biomedicine).At nanoscale,interfacial forces dominate over bulk forces,and nonlinear effects are important,which significantly deviate from conventional theory.During the past decades,a series of experiments,theories,and simulations have been performed to investigate fluid flow at nanoscale,which has advanced our fundamental knowledge of this topic.However,a critical review is still lacking,which has seriously limited the basic understanding of this area.Therefore herein,we systematically review experimental,theoretical,and simulation works on single-and multi-phases fluid flow at nanoscale.We also clearly point out the current research gaps and future outlook.These insights will promote the significant development of nonlinear flow physics at nanoscale and will provide crucial guidance on the relevant areas. 展开更多
关键词 Transport in nanoporous media Multi-phase fluid dynamics Nonlinear flow mechanisms Nonlinear flow conservation equations Interfacial forces Molecular dynamics simulation
下载PDF
Structure and electrochemical hydrogen storage behaviors of Mg-Ce-Ni-Al-based alloys prepared by mechanical milling 被引量:2
2
作者 Yanghuan Zhang Pengpeng Wang +3 位作者 Wei Zhang wengang bu Yan Qi Shihai Guo 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第10期1093-1102,I0003,共11页
The influences of milling time and Ce content on the electrochemical property and micro structure of asmilled Mg1-xCexNi0.9Al0.1(x=0,0.02,0.04,0.06,0.08)+50 wt%Ni alloys were investigated systematically.The as-milled ... The influences of milling time and Ce content on the electrochemical property and micro structure of asmilled Mg1-xCexNi0.9Al0.1(x=0,0.02,0.04,0.06,0.08)+50 wt%Ni alloys were investigated systematically.The as-milled alloys have an outstanding activation property.The cycle stability conspicuously grows up with milling time and Ce proportion increasing.The capacity retention rate at 100 th cycle of x=0.02 alloy augments from 47% to 63% when prolonging milling time from 5 to 30 h and it grows from55% to 82% for the 30 h milled alloy with Ce content growing from 0 to 0.08.The discharge capacity of x=0.02 alloy grows up invariably with milling time prolonging,while that of the 30 h milled alloys has the maximal value of 578.4 mAh/g with Ce content increasing.Moreover,the electrochemical kinetic properties of alloys significantly improve with milling duration extending,while they have the maximal values with Ce proportion varying. 展开更多
关键词 Mg-based alloy Ce substituting Mg Mechanical milling Electrochemical property Rare earths
原文传递
Structure and Electrochemical Hydrogen Storage Properties of as-Milled Mg-Ce-Ni-Al-Based Alloys 被引量:1
3
作者 Yanghuan Zhang Zhenyang Li +3 位作者 Wei Zhang wengang bu Yan Qi Shihai Guo 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2020年第5期630-642,共13页
At room temperature,crystalline Mg-based alloys,including Mg2 Ni,MgNi,REMg12 and La2 Mg17,have been proved with weak electrochemical hydrogen storage performances.For improving their electrochemical property,the Mg is... At room temperature,crystalline Mg-based alloys,including Mg2 Ni,MgNi,REMg12 and La2 Mg17,have been proved with weak electrochemical hydrogen storage performances.For improving their electrochemical property,the Mg is partially substituted by Ce in Mg-Ni-based alloys and the surface modification treatment is performed by mechanical coating Ni.Mechanical milling is utilized to synthesize the amorphous and nanocrystalline Mg1-xCexNi0.9Al0.1(x=0,0.02,0.04,0.06,0.08)+50 wt%Ni hydrogen storage alloys.The effects made by Ce substitution and mechanical milling on the electrochemical hydrogen storage property and structure have been analyzed.It shows that the as-milled alloys electrochemically absorb and desorb hydrogen well at room temperature.The as-milled alloys,without any activation,can reach their maximal discharge capacities during first cycling.The maximal value of the 30-h-milled alloy depending on Ce content is 578.4 mAh/g,while that of the x=0.08 alloy always grows when prolonging milling duration.The maximal discharge capacity augments from337.4 to 521.2 mAh/g when milling duration grows from 5 to 30 h.The cycle stability grows with increasing Ce content and milling duration.Concretely,the S100 value augments from 55 to 82%for the alloy milled for 30 h with Ce content rising from 0 to 0.08 and from 66 to 82%when milling the x=0.08 alloy mechanically from 5 to 30 h.The alloys’electrochemical dynamics parameters were measured as well which have maximum values depending on Ce content and keep growing up with milling duration extending. 展开更多
关键词 Mg-Ni-based alloy Ce substituting Mg Surface modification Mechanical milling Electrochemical performance
原文传递
Highly Improved Gaseous Hydrogen Storage Characteristics of the Nanocrystalline and Amorphous Nd-Cu-added Mg_2Ni-type Alloys by Melt Spinning
4
作者 Yanghuan Zhang Tingting Zhai +3 位作者 Baowei Li Huiping Ren wengang bu Dongliang Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第10期1020-1026,共7页
The nanocrystalline and amorphous Mg-Nd-Ni-Cu quaternary alloys with a composition of (Mg24Ni10Cu2)loo-xNdx (x = 0-20) were prepared by melt spinning. The X-ray diffraction and transmission electron microscopy ins... The nanocrystalline and amorphous Mg-Nd-Ni-Cu quaternary alloys with a composition of (Mg24Ni10Cu2)loo-xNdx (x = 0-20) were prepared by melt spinning. The X-ray diffraction and transmission electron microscopy inspections reveal that, by varying the spinning rate and the Nd content, different microstructures could be obtained by melt spinning. Particularly, the as-spun Nd-free alloy holds an entire nanocrystalline structure but the as-spun Nd-added alloy has a nanocrystalline and amorphous structure, which implies that the addition of Nd facilitates the glass forming in the Mg2Ni-type alloy. Also, the degree of the amorphization in the as-spun Nd-added alloys clearly increases with increasing the spinning rate and the Nd content. The H-storage capacity and the hydrogenation kinetics of amorphous, partially and completely nanocrystalline alloys were investigated and it was found that they are dependent on the microstructure and the phase composition of the alloys. Specially, enhancing the spinning rate from 0 (the as-cast was defined as the spinning rate of 0 m/s) to 40 m/s makes the hydrogen absorption saturation ratio (R5a) (a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increase from 35.2% to 90.3% and the hydrogen desorption ratio (R10d) (a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) rise from 12.7% to 44.9% for the (x = 5) alloy. And the growing of the Nd content from 0 to 20 gives rise to the R5a and R10d values rising from 85.7% to 94.5% and from 36.7% to 54.8% for the as-spun (30 m/s) alloys, respectively. 展开更多
关键词 Mg2Ni-type alloy Nd addition Melt spinning STRUCTURES Hydrogen storage
原文传递
Electrochemical Performance of Nanocrystalline and Amorphous Mg–Nd–Ni–Cu-Based Mg_2Ni-type Alloy Electrodes Used in Ni-MH Batteries
5
作者 Yanghuan Zhang Haitao Wang +3 位作者 Xiaoping Dong wengang bu Zeming Yuan Guofang Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第6期1088-1098,共11页
Nanocrystalline and amorphous Mg2Ni-type(Mg24Ni10Cu2)100–xNdx(x = 0, 5, 10, 15, 20) alloys were prepared by melt-spinning technology. The structures of as-cast and spun alloys were characterised by X-ray diffract... Nanocrystalline and amorphous Mg2Ni-type(Mg24Ni10Cu2)100–xNdx(x = 0, 5, 10, 15, 20) alloys were prepared by melt-spinning technology. The structures of as-cast and spun alloys were characterised by X-ray diffraction,scanning electron microscopy and transmission electron microscopy. Electrochemical performance of the alloy electrodes was measured using an automatic galvanostatic system. The electrochemical impedance spectra and Tafel polarisation curves of the alloy electrodes were plotted using an electrochemical work station. The hydrogen diffusion coefficients were calculated using the potential step method. Results indicate that all the as-cast alloys present a multiphase structure with Mg2 Ni type as the major phase with Mg6 Ni, Nd5Mg41 and Nd Ni as secondary phases. The secondary phases increased with the increasing Nd content. The as-spun Nd-free alloy exhibited nanocrystalline structure, whereas the as-spun Nd-doped alloys exhibited nanocrystalline and amorphous structures. These results suggest that adding Nd facilitates glass formation of Mg2Ni-type alloys. Melt spinning and Nd addition improved alloy electrochemical performance, which includes discharge potential characteristics, discharge capacity, electrochemical cycle stability and high-rate discharge ability. 展开更多
关键词 Mg2Ni-type alloy Nd addition Melt spinning Structure Electrochemical performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部