Sulfamethoxazole(SMX)is an antibiotic and widely present in aquatic environments,so it presents a serious threat to human health and sustainable development.A dielectric barrier discharge(DBD)plasma jet was utilized t...Sulfamethoxazole(SMX)is an antibiotic and widely present in aquatic environments,so it presents a serious threat to human health and sustainable development.A dielectric barrier discharge(DBD)plasma jet was utilized to degrade aqueous SMX,and the effects of various operating parameters(working gas,discharge power,etc)on SMX degradation performance were studied.The experimental results showed that the DBD plasma jet can obtain a relatively high degradation efficiency for SMX when the discharge power is high with an oxygen atmosphere,the initial concentration of SMX is low,and the aqueous solution is under acidic conditions.The reactive species produced in the liquid phase were detected,and OH radicals and O3were found to play a significant role in the degradation of SMX.Moreover,the process of SMX degradation could be better fitted by the quasi-first-order reaction kinetic equation.The analysis of the SMX degradation process indicated that SMX was gradually decomposed and 4-amino benzene sulfonic acid,benzene sulfonamide,4-nitro SMX,and phenylsulfinyl acid were detected,and thus three possible degradation pathways were finally proposed.The mineralization degree of SMX reached 90.04%after plasma treatment for 20 min,and the toxicity of the solution fluctuated with the discharge time but eventually decreased.展开更多
Atmospheric pressure cold plasma, with advantages such as high particle activity, no thermal damage, high efficiency and direct and friendly contact with human tissues, is considered to have great potential in biomedi...Atmospheric pressure cold plasma, with advantages such as high particle activity, no thermal damage, high efficiency and direct and friendly contact with human tissues, is considered to have great potential in biomedical applications. Therefore, 'plasma medicine' as a new interdiscipline has been developed in the past two decades. This review first briefly describes the development of typical plasma sources suitable for biomedical applications, and those with different discharge forms are simply compared, evaluated and summarized. Subsequently, measurement of the crucial gaseous reactive particles(e.g. OH and O) and their spatio-temporal distributions are introduced. Meanwhile, the generation and variation rules and the related critical macroscopic parameters of the plasma-induced aqueous reactive species are summarized. Finally, related studies in the last ten years on the mechanisms of the plasma-driven microbial inactivation and plasma-induced apoptosis of cancer cells are introduced. Moreover, some scientific problems that need to be urgently solved in the field of plasma medicine are also discussed. This review will provide useful guidance for future related research.展开更多
基金supported jointly by National Natural Science Foundation of China(Nos.U20A20372,51807046,51777206)the Natural Science Foundation of Anhui Province(Nos.2108085MD136,1908085MA29)。
文摘Sulfamethoxazole(SMX)is an antibiotic and widely present in aquatic environments,so it presents a serious threat to human health and sustainable development.A dielectric barrier discharge(DBD)plasma jet was utilized to degrade aqueous SMX,and the effects of various operating parameters(working gas,discharge power,etc)on SMX degradation performance were studied.The experimental results showed that the DBD plasma jet can obtain a relatively high degradation efficiency for SMX when the discharge power is high with an oxygen atmosphere,the initial concentration of SMX is low,and the aqueous solution is under acidic conditions.The reactive species produced in the liquid phase were detected,and OH radicals and O3were found to play a significant role in the degradation of SMX.Moreover,the process of SMX degradation could be better fitted by the quasi-first-order reaction kinetic equation.The analysis of the SMX degradation process indicated that SMX was gradually decomposed and 4-amino benzene sulfonic acid,benzene sulfonamide,4-nitro SMX,and phenylsulfinyl acid were detected,and thus three possible degradation pathways were finally proposed.The mineralization degree of SMX reached 90.04%after plasma treatment for 20 min,and the toxicity of the solution fluctuated with the discharge time but eventually decreased.
基金financially supported by National Natural Science Foundation of China (Grant Nos. 51777206, 51807046 and 51877208)the Natural Science Foundation of Anhui Province (Grant Nos. 1908085MA29 and 1808085MA13)。
文摘Atmospheric pressure cold plasma, with advantages such as high particle activity, no thermal damage, high efficiency and direct and friendly contact with human tissues, is considered to have great potential in biomedical applications. Therefore, 'plasma medicine' as a new interdiscipline has been developed in the past two decades. This review first briefly describes the development of typical plasma sources suitable for biomedical applications, and those with different discharge forms are simply compared, evaluated and summarized. Subsequently, measurement of the crucial gaseous reactive particles(e.g. OH and O) and their spatio-temporal distributions are introduced. Meanwhile, the generation and variation rules and the related critical macroscopic parameters of the plasma-induced aqueous reactive species are summarized. Finally, related studies in the last ten years on the mechanisms of the plasma-driven microbial inactivation and plasma-induced apoptosis of cancer cells are introduced. Moreover, some scientific problems that need to be urgently solved in the field of plasma medicine are also discussed. This review will provide useful guidance for future related research.