期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Low-cost biodegradable lead sequestration film for perovskite solar cells
1
作者 Yiming Xiong Haoyu Cai +6 位作者 Wang Yue wenjian shen Xuehao Zhu Juan Zhao Fuzhi Huang Yi-Bing Cheng Jie Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期311-320,共10页
Despite the high efficiency that has been achieved for the perovskite solar cells(PSCs),the hazardous lead leakage from the perovskite absorber layer is one of the crucial barriers still hindering its penetration into... Despite the high efficiency that has been achieved for the perovskite solar cells(PSCs),the hazardous lead leakage from the perovskite absorber layer is one of the crucial barriers still hindering its penetration into the commercial market for a large-scale installation.Herein,we report a novel low-cost and biodegradable lead sequestration layer with high compatibility for up-scalable encapsulation of PSCs.Through a precisely designed cross-linking reaction of chemical agents,the as-made biodegradable chitosan composite film shows enhanced mechanical strength,chemical stability,and lead adsorption capacity.The designed encapsulation strategy reduces over 99.99% lead leakage to <2 ppb under varied simulations of weather conditions(hail,rain,or flood),which meet the safe level of drinking water set by the US Environmental Protection Agency(EPA).Moreover,the PSC efficiency is improved from 21.91% to22.82% due to the improved light absorption from the printed biodegradable lead absorption film.Finally,we present a prototype process of accumulation and recycling of lead compounds in PSCs derbies via the biodegradation process.Based on the low-cost biodegradable lead sequestration film,this environmental-friendly encapsulation strategy could address the lead leakage issue for further commercialization of PSCs. 展开更多
关键词 Lead sequestration Cross-linking Perovskite solar cells BIODEGRADABLE Recycling
下载PDF
Interface passivation engineering for hybrid perovskite solar cells 被引量:1
2
作者 wenjian shen Yao Dong +2 位作者 Fuzhi Huang Yi-Bing Cheng Jie Zhong 《Materials Reports(Energy)》 2021年第4期22-33,共12页
The allure of high efficiency and low-temperature solution-processed organic-inorganic hybrid perovskite solar cells(PSCs)are inspiring scientists to seek for its commercialization.Interface passivation engineering ha... The allure of high efficiency and low-temperature solution-processed organic-inorganic hybrid perovskite solar cells(PSCs)are inspiring scientists to seek for its commercialization.Interface passivation engineering has become an effective way to further enhance the efficiency and stability of PSCs by defect passivation,reduces the charge recombination and ion migration initiation and hysteresis control,etc.Herein,we have summarized the effects and recent research progress of interface passivation engineering in PSCs.Interface passivation layers can be realized by using the solution and/or vacuum evaporation processes which are very adaptable to varied materials with different properties and fabrication processes for enhanced photovoltaic performance and stability. 展开更多
关键词 Perovskite solar cells Charges recombination Interface passivation engineering Hysteresis effect PSCs stability Solution processes Vacuum evaporation
下载PDF
In-situ monitored chemical bath deposition of planar NiO x layer for inverted perovskite solar cell with enhanced efficiency
3
作者 Liqi Li wenjian shen +8 位作者 Chenquan Yang Yuxi Dou Xuehao Zhu Yao Dong Juan Zhao Junyan Xiao Fuzhi Huang Yi-Bing Cheng Jie Zhong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第2期145-153,共9页
As a convenient,low-cost and up-scalable solution route,chemical bath deposition(CBD)has exhibited impressive advantages in fabricating electron transporting materials like SnO_(2),achieving record efficien-cies for r... As a convenient,low-cost and up-scalable solution route,chemical bath deposition(CBD)has exhibited impressive advantages in fabricating electron transporting materials like SnO_(2),achieving record efficien-cies for regular n-i-p perovskite solar cells(PSCs).However,for the hysteresis-free and potentially more stable inverted p-i-n PSCs,CBD processing is rarely studied to improve the device performance.In this work,we first present a CBD planar NiO x film as the efficient hole transport layer for the inverted per-ovskite solar cells(IPSCs).The morphologies and semiconducting properties of the NiO x film can be ad-justed by varying the concentration of[Ni(H 2 O)x(NH 3)6-x]2+cation via in-situ monitoring of the CBD re-action process.The characterizations of ultraviolet photoelectron spectroscopy,transient absorption spec-troscopy,time-resolved photoluminescence suggest that the CBD planar NiO x film possesses enhanced conductivity and aligned energy band levels with perovskite,which benefits for the charge transport in the IPSCs.The devices based on planar NiO x at 50°C and low nickel precursor concentration achieved an enhanced efficiency from 16.14%to 18.17%.This work established an efficient CBD route to fabricate planar NiO x film for PSCs and paved the way for high performance PSCs with CBD-prepared hole transporting materials. 展开更多
关键词 Nickel oxide Perovskite solar cell Chemical bath deposition Planar NiO x film
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部