Observability analysis(OA)is vital to obtaining the available input measurements of state estimation(SE)in an integrated electricity and heating system(IEHS).Considering the thermal quasi-dynamics in pipelines,the mea...Observability analysis(OA)is vital to obtaining the available input measurements of state estimation(SE)in an integrated electricity and heating system(IEHS).Considering the thermal quasi-dynamics in pipelines,the measurement equations in heating systems are dependent on the estimated results,leading to an interdependency between OA and SE.Conventional OA methods require measurement equations be known exactly before SE is performed,and they are not applicable to IEHSs.To bridge this gap,a scenario-based OA scheme for IEHSs is devised that yields reliable analysis results for a predefined set of time-delay scenarios to cope with this interdependency.As its core procedure,the observable state identification and observability restoration are formulated in terms of integer linear programming.Numerical tests are conducted to demonstrate the validity and superiority of the proposed formulation.展开更多
In order to obtain an accurate state estimation of the operation in the combined heat and power system,it is necessary to carry out state estimation.Due to the limited information sharing among various energy systems,...In order to obtain an accurate state estimation of the operation in the combined heat and power system,it is necessary to carry out state estimation.Due to the limited information sharing among various energy systems,it is practical to perform state estimation in a decentralized manner.However,the possible communication packet loss is seldomly considered among various energy systems.This paper bridges this gap by proposing a relaxed alternating direction method of multiplier algorithm.It can also improve the computation efficiency compared with the conventional alternating direction of the multiplier algorithm.Case studies of two test systems are carried out to show the validity and superiority of the proposed algorithm.展开更多
基金supported by National Natural Science Foundation of China(52177086)Fundamental Research Funds for the Central Universities(2023ZYGXZR063).
文摘Observability analysis(OA)is vital to obtaining the available input measurements of state estimation(SE)in an integrated electricity and heating system(IEHS).Considering the thermal quasi-dynamics in pipelines,the measurement equations in heating systems are dependent on the estimated results,leading to an interdependency between OA and SE.Conventional OA methods require measurement equations be known exactly before SE is performed,and they are not applicable to IEHSs.To bridge this gap,a scenario-based OA scheme for IEHSs is devised that yields reliable analysis results for a predefined set of time-delay scenarios to cope with this interdependency.As its core procedure,the observable state identification and observability restoration are formulated in terms of integer linear programming.Numerical tests are conducted to demonstrate the validity and superiority of the proposed formulation.
基金supported in part by the Key-Area Research and Development Program of Guangdong Province(No.2020B010166004)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515011408)+2 种基金the Science and Technology Program of Guangzhou(No.201904010215)the Talent Recruitment Project of Guangdong(No.2017GC010467)the Fundamental Research Funds for the Central Universities
文摘In order to obtain an accurate state estimation of the operation in the combined heat and power system,it is necessary to carry out state estimation.Due to the limited information sharing among various energy systems,it is practical to perform state estimation in a decentralized manner.However,the possible communication packet loss is seldomly considered among various energy systems.This paper bridges this gap by proposing a relaxed alternating direction method of multiplier algorithm.It can also improve the computation efficiency compared with the conventional alternating direction of the multiplier algorithm.Case studies of two test systems are carried out to show the validity and superiority of the proposed algorithm.
基金outstanding young scientist research grant in Shandong Province (No.2013BSE27128) National Natural Science Foundation of China (No.81370943)+1 种基金 China Postdoctoral Science Foundation (No.2015M580334)Shanghai Municipal Health and Family Planning Commission Project (No.20134189).