A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in th...A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in the recovery process,NaOH was used to remove impurity.After impurity removal,the spent LiFePO_(4) cathode material was used as raw material under the H_(2)SO_(4) system,and the pressure oxidation leaching process was adopted to achieve the preferential leaching of lithium.The E-pH diagram of the Fe-P-Al-H_(2)O system can determine the stable region of each element in the recovery process of spent LiFePO_(4)Li-batteries.Under the optimal conditions(500 r·min^(-1),15 h,363.15 K,0.4 MPa,the liquid-solid ratio was 4:1 ml·g^(-1)and the acid-material ratio was 0.29),the leaching rate of Li was 99.24%,Fe,Al,and Ti were 0.10%,2.07%,and 0.03%,respectively.The Fe and P were precipitated and recovered as FePO_(4)·2H_(2)O.The kinetic analysis shows that the process of high-pressure acid leaching of spent LiFePO_(4) materials depends on the surface chemical reaction.Through the life cycle assessment(LCA)of the spent LiFePO_(4) whole recovery process,eight midpoint impact categories were selected to assess the impact of recovery process.The results can provide basic environmental information on production process for recycling industry.展开更多
Sluggish kinetics of methanol oxidation reaction(MOR)and alkaline hydrogen evolution reaction(HER)even on precious Pt catalyst impede the large-scale commercialization of direct methanol fuel cell(DMFC)and water elect...Sluggish kinetics of methanol oxidation reaction(MOR)and alkaline hydrogen evolution reaction(HER)even on precious Pt catalyst impede the large-scale commercialization of direct methanol fuel cell(DMFC)and water electrolysis technologies.Since both of MOR and alkaline HER are related to water dissociation reaction(WDR),it is reasonable to invite secondary active sites toward WDR to pair with Pt for boosted MOR and alkaline HER activity on Pt.Mo_(2)C and Ni species are therefore employed to engineer NiPt-Mo_(2)C active site pairs,which can be encapsulated in carbon cages,via an in-situ self-confinement strategy.Mass activity of Pt in NiPt-Mo_(2)C@C toward HER is boosted to11.3 A mg_(pt)^(-1),33 times higher than that of Pt/C.Similarly,MOR catalytic activity of Pt in NiPt-Mo_(2)C@C is also improved by 10.5 times and the DMFC maximum power density is hence improved by 9-fold.By considering the great stability,NiPt-Mo_(2)C@C exhibits great practical application potential in DMFCs and water electrolysers.展开更多
The numerous photos captured by low-price Internet of Things(IoT)sensors are frequently affected by meteorological factors,especially rainfall.It causes varying sizes of white streaks on the image,destroying the image...The numerous photos captured by low-price Internet of Things(IoT)sensors are frequently affected by meteorological factors,especially rainfall.It causes varying sizes of white streaks on the image,destroying the image texture and ruining the performance of the outdoor computer vision system.Existing methods utilise training with pairs of images,which is difficult to cover all scenes and leads to domain gaps.In addition,the network structures adopt deep learning to map rain images to rain-free images,failing to use prior knowledge effectively.To solve these problems,we introduce a single image derain model in edge computing that combines prior knowledge of rain patterns with the learning capability of the neural network.Specifically,the algorithm first uses Residue Channel Prior to filter out the rainfall textural features then it uses the Feature Fusion Module to fuse the original image with the background feature information.This results in a pre-processed image which is fed into Half Instance Net(HINet)to recover a high-quality rain-free image with a clear and accurate structure,and the model does not rely on any rainfall assumptions.Experimental results on synthetic and real-world datasets show that the average peak signal-to-noise ratio of the model decreases by 0.37 dB on the synthetic dataset and increases by 0.43 dB on the real-world dataset,demonstrating that a combined model reduces the gap between synthetic data and natural rain scenes,improves the generalization ability of the derain network,and alleviates the overfitting problem.展开更多
The loss of three-dimensional atmospheric electric field(3DAEF)data has a negative impact on thunderstorm detection.This paper proposes a method for thunderstorm point charge path recovery.Based on the relation-ship b...The loss of three-dimensional atmospheric electric field(3DAEF)data has a negative impact on thunderstorm detection.This paper proposes a method for thunderstorm point charge path recovery.Based on the relation-ship between a point charge and 3DAEF,we derive corresponding localization formulae by establishing a point charge localization model.Generally,point charge movement paths are obtained after fitting time series localization results.However,AEF data losses make it difficult to fit and visualize paths.Therefore,using available AEF data without loss as input,we design a hybrid model combining the convolutional neural network(CNN)and bi-directional long short-term memory(BiLSTM)to predict and recover the lost AEF.As paths are not present during sunny weather,we propose an extreme gradient boosting(XGBoost)model combined with a stacked autoencoder(SAE)to further determine the weather conditions of the recovered AEF.Specifically,historical AEF data of known weathers are input into SAE-XGBoost to obtain the distribution of predicted values(PVs).With threshold adjustments to reduce the negative effects of invalid PVs on SAE-XGBoost,PV intervals corresponding to different weathers are acquired.The recovered AEF is then input into the fixed SAE-XGBoost model.Whether paths need to be fitted is determined by the interval to which the output PV belongs.The results confirm that the proposed method can effectively recover point charge paths,with a maximum path deviation of approximately 0.018 km and a determination coefficient of 94.17%.This method provides a valid reference for visual thunderstorm monitoring.展开更多
<strong>Objective:</strong> To investigate the occurrence pattern of abnormal bone density in male long-distance runners from several different regions of China, and provide a basis for elucidating the inf...<strong>Objective:</strong> To investigate the occurrence pattern of abnormal bone density in male long-distance runners from several different regions of China, and provide a basis for elucidating the influences of geo-environmental differences on bone density. <strong>Methods:</strong> We employed a set of well-designed exclusion-inclusion criteria to recruit study subjects, in which compounding factors were managed and regional environmental traits were fully incorporated. WHO (World Health Organization) criteria for the diagnosis of osteoporosis were then used to examine the subjects to determine occurrence of abnormal bone density. The resulting data were analyzed using methods of spatial statistics, which included several approaches, such as spatial autocorrelation, hot spot analysis, and Geodetector Software analysis, to depict and analyze the spatial distribution of abnormal bone density in male athletes from different regions in China, thereby investigating the influences of geo-environmental factors (e.g., temperature, humidity, and altitude) on bone density. <strong>Results:</strong> A total of 685 subjects were effectively examined in this study, including 486 with normal bone density, 185 with osteopenia, and 14 with osteoporosis. Spatial distribution analysis revealed that the distribution of subjects with abnormal bone density overall exhibited a pattern indicating that the level of abnormal bone density in the eastern regions was higher than that in the western regions and that the levels of abnormal bone density in the southern and northern regions were higher than that in the middle regions. Spatial autocorrelation analysis revealed a Moran’s <em>I</em> = 0.136, <em>Z</em>-score = 1.114, and <em>P</em> value = 0.265 and indicated that the athletes with abnormal bone density were randomly distributed in each region. Hot spot analysis revealed that Tibet and Qinghai displayed distributions of cold spots. Geodetector Software analysis yielded a <em>Q</em> value for annual average temperature of 1.000 and a corresponding <em>P</em> value of 0.000, and the results revealed that temperature significantly affected bone density and that altitude, relative humidity, sunlight hours, and temperature variations displayed synergistic effects on bone density and could diminish the influences of temperature on bone density. <strong>Conclusion:</strong> Our data revealed that different regions displayed different distribution patterns of abnormal bone density such that the level in the eastern regions was higher than that in the western ones and that the levels in the southern and northern regions were higher than that in the middle regions;specifically, the provinces of Yunnan, Heilongjiang, Hainan, and Inner Mongolia had high rates of abnormal bone density, whereas Tibet and Qinghai had relatively good conditions of bone density. Our data suggested that suitable temperature changes and appropriate levels of temperature variations can decrease the occurrence rates of osteopenia and osteoporosis.展开更多
Bone defects caused by trauma,tumour resection,infection and congenital deformities,together with articular cartilage defects and cartilage–subchondral bone complex defects caused by trauma and degenerative diseases,...Bone defects caused by trauma,tumour resection,infection and congenital deformities,together with articular cartilage defects and cartilage–subchondral bone complex defects caused by trauma and degenerative diseases,remain great challenges for clinicians.Novel strategies utilising cell sheet technology to enhance bone and cartilage regeneration are being developed.The cell sheet technology has shown great clinical potential in regenerative medicine due to its effective preservation of cell–cell connections and extracellular matrix and its scaffold-free nature.This review will first introduce several widely used cell sheet preparation systems,including traditional approaches and recent improvements,as well as their advantages and shortcomings.Recent advances in utilising cell sheet technology to regenerate bone or cartilage defects and bone–cartilage complex defects will be reviewed.The key challenges and future research directions for the application of cell sheet technology in bone and cartilage regeneration will also be discussed.展开更多
With continuous consumption of nonrenewable energy,solar energy has been predicted to play an essential role in meeting the energy demands and miti gating environmental issues in the future.Despite being green,clean a...With continuous consumption of nonrenewable energy,solar energy has been predicted to play an essential role in meeting the energy demands and miti gating environmental issues in the future.Despite being green,clean and pollution-free energy,solar energy cannot be adopted directly as it cannot provide sufficiently high energy density to work in the absence of machinery.Thus,it is necessary to develop an effective strategy to convert and store solar energy into chemical energy to achieve social sustainable development using solar energy as the main power source.Photocatalysis,in which semi conductor photocatalysts play a key role,is one of the most promising can didates for realising the effective utilisation of sunlight in a green,low-cost and environmentally friendly method.The photocatalytic efficiency of photo catalysts is considerably influenced by their compositions.Among the various heterostructures,Z-scheme heterojunction is one of the most interesting ar chitecture due to its outstanding performance and excellent artificial imitation of photosynthesis.Z-scheme photocatalysts have attracted considerable at tention in the past few decades.Herein,we review contemporary Z-scheme systems,with a particular focus on mechanistic breakthroughs,and highlight current state-of-the-art systems.Z-type photocatalysts are classified as tradi tional,all-solid-state,direct Z-schemes and S-scheme photocatalysts.The morphology,characterisation and working mechanism of each type of Z-scheme are discussed in detail.Furthermore,the applications of Z-scheme in photoelectrochemical water splitting,nitrogen fixation,pollutant degrada tion and carbon dioxide reduction are illustrated.Finally,we outline the main challenges and potential advances in Z-scheme architectures,as well as their future development directions.展开更多
A Z-scheme heterostructure of Mo,W co-doped BiVO_(4)(Mo,W:BVO/BiOCl@C)was fabricated by a simple solid solution drying and calcination(SSDC)method.The heterostructure was characterized by X-ray diffraction(XRD),Fourie...A Z-scheme heterostructure of Mo,W co-doped BiVO_(4)(Mo,W:BVO/BiOCl@C)was fabricated by a simple solid solution drying and calcination(SSDC)method.The heterostructure was characterized by X-ray diffraction(XRD),Fourier transform infrared(FTIR),X-ray photoelectron spectroscopy(XPS),etc.Under visible light irradiation,Mo,W:BVO/BiOCl@C heterostructure exhibits excellent photoelectrochemical capability compared with other as-prepared samples.The photocurrent density and the incident photon-to-electron conversion efficiency(IPCE)are about 5.4 and 9.0 times higher than those of pure BiVO_(4),respectively.The enhancement of the photoelectrochemical performance can be attributed to the construct of Z-scheme system,which is deduced from the radical trapping experiments.The Mo,W:BVO/BiOCl@C Z-scheme heterojunction enhances the visible-light absorption and reduces the recombination rate of charge carriers.This work provides an effective strategy to construct Z-scheme photoelectrodes for the application of photoelectrochemical water splitting.展开更多
In the aluminum industry, secondary aluminum dross (SAD) is an inevitable solid residue, which usually contains 30 - 70 wt% Al2O3. In this work, Al(OH)3 was extracted from SAD through acid-leaching and alkali purifica...In the aluminum industry, secondary aluminum dross (SAD) is an inevitable solid residue, which usually contains 30 - 70 wt% Al2O3. In this work, Al(OH)3 was extracted from SAD through acid-leaching and alkali purification process. The as-obtained Al(OH)3 precipitation then was calcinated to synthesize porous γ-Al2O3 assisting by an agricultural waste biomass-corn straw as biotemplate. Effects of H2SO4 concentration, reaction temperature and time on the recovery of SAD were investigated. Furthermore, the dependence of calcination temperature on specific surface area, pore volume and content of porous γ-Al2O3 was analyzed. X-ray diffraction (XRD) and X-ray fluorescence (XRF) were used to inspect the phase compositions and their contents, respectively. Scanning electron microscopy (SEM) was employed to analyze the morphologies of the sintered porous γ-Al2O3. It was found that the highest recycle rate of aluminum from SAD was obtained under optimum conditions of 80°C, acid concentration of 1.6 mol/l, and reaction time of 5 h by acid process. The porous γ-Al2O3 with specific surface area, 261.22 m2/g and average pore diameter, 52.64 nm, was obtained under calcination at 850°C through mixing the as-obtained Al(OH)3 precipitation and corn straw.展开更多
Nanocrystals provide a variety of size and shape-dependent properties with applications in a wide range of areas, gaining much attention in the past few years. However, due to the nature of the kinetic nanocrystal gro...Nanocrystals provide a variety of size and shape-dependent properties with applications in a wide range of areas, gaining much attention in the past few years. However, due to the nature of the kinetic nanocrystal growth, the procedures often require strict experimental conditions and the shape and size of nanocrystals are difficult to control. In such context, organic templates, which are artificially modified or synthesized, can direct inorganic nanocrystal nucleation and growth to achieve desired shape, size and ultimately properties. In this review article, two general categories of organic templates used for making inorganic nanomaterials are discussed:biotemplates(e.g., peptide, lipid, DNA, and capsid) and block copolymer templates(e.g., block copolymer micelles, star-like block copolymer unimicelles). The goal of this review is to bridge these gaps and help foster a greater awareness of the range and applicability of different organic templating techniques within the field of nanotechnology.展开更多
According to this paper, the dragon-shape strategy is the optimized option of China's future strategy with respect to the geographic distribution of regional economy.
Being parent materials of two-dimensional (2D) crystals, van der Waals layered materials have received revived interest. In most 2D materials, the interaction between electrons is negligible. Introducing the interacti...Being parent materials of two-dimensional (2D) crystals, van der Waals layered materials have received revived interest. In most 2D materials, the interaction between electrons is negligible. Introducing the interaction can give rise to a variety of exotic properties. Here, via intercalating a van der Waals layered compound VS2, we find evidence for electron correlation by extensive magnetic, thermal, electrical, and thermoelectric characterizations. The low temperature Sommerfeld coefficient is 64 mJ·K-2·mol-1 and the Kadowaki-Woods ratio rKW^0.20a0. Both supports an enhancement of the electron correlation. The temperature dependences of the resistivity and thermopower indicate an important role played by the Kondo effect. The Kondo temperature TK is estimated to be around 8 K. Our results suggest intercalation as a potential means to engineer the electron correlation in van der Waals materials, as well as 2D materials.展开更多
Sunflower(Helianthus annuus L.)is one of the four major oil crops in the world and has high economic value.However,the lack of discrete element method(DEM)models and parameters for sunflower seeds hinders the applicat...Sunflower(Helianthus annuus L.)is one of the four major oil crops in the world and has high economic value.However,the lack of discrete element method(DEM)models and parameters for sunflower seeds hinders the application of DEM for computer simulation in the key working processes of sunflower seed sowing and harvesting.The present study was conducted on two varieties of sunflower,and the DEM model of sunflower seeds was established by using 3D scanning technology based on the distribution of triaxial dimensions and volumes of the geometric model of sunflower seeds.Similarly,the physical characteristics parameters of sunflower seeds were determined by physical tests and the simulation parameters were screened for significance based on the Plackett-Burman test.Our results show that the coefficient of static friction between sunflower seeds and the coefficient of rolling friction have significant effects on the repose angle of the simulation test.Furthermore,the optimal range of the significance parameters was further determined by the steepest climb test,and the second-order regression model of the significance parameters and the repose angle was obtained according to the Box-Behnken design test and Response Surface Methodology(RSM),with the repose angle measured by the physical test as the optimized target value to obtain the optimal parameter combination.Finally,a two-sample t-test for the repose angle of the physical test and the repose angle of the simulation test yielded P>0.05.Our results confirms that the repose angle obtained from simulation is not significantly different from the physical test value,and the relative errors between the repose angle of the simulation test and the physical test are 1.43%and 0.40%,respectively,for the optimal combination of parameters.Based on these results it can be concluded that the optimal parameters obtained from the calibration can be used for DEM simulation experiments related to the sunflower seed sowing and harvesting process.展开更多
The fast blue optical transients(FBOTs)are a new population of extragalactic transients of unclear physical origin.A variety of mechanisms has been proposed including failed supernova explosion,shock interaction with ...The fast blue optical transients(FBOTs)are a new population of extragalactic transients of unclear physical origin.A variety of mechanisms has been proposed including failed supernova explosion,shock interaction with a dense medium,young magnetar,accretion onto a compact object and stellar tidal disruption event,but none is conclusive.Here we report the discovery of a possible X-ray quasi-periodicity signal with a period of~250 s(at a significance level of 99.76%)in the brightest FBOT AT2018cow through the analysis of XMM-Newton/PN data.The signal is independently detected at the same frequency in the average power density spectrum from data taken from the Swift telescope,with observations covering from 6 to 37 days after the optical discovery,though the significance level is lower(94.26%).This suggests that the quasi-periodic oscillation(QPO)frequency may be stable over at least 1.1×10^(4)cycles.Assuming the~250 s QPO to be a scaled-down analog of that typically seen in stellar mass black holes,a black hole mass of~103–10^(5)solar masses could be inferred.The overall X-ray luminosity evolution could be modeled with a stellar tidal disruption by a black hole of~10^(4)solar masses,providing a viable mechanism to produce AT2018cow.Our findings suggest that other bright FBOTs may also harbor intermediate-mass black holes.展开更多
Natural soils are more durable than almost all man-made materials. Evapotranspiration (ET) covers use vegetated soil layers to store water until it is either evaporated from the soil surface or transpired through ve...Natural soils are more durable than almost all man-made materials. Evapotranspiration (ET) covers use vegetated soil layers to store water until it is either evaporated from the soil surface or transpired through vegetation. ETcovers rely on the water storage capacity of soil layer, rather than low permeability materials, to minimize percolation. While the use of ET covers in landfills increased over the last decade, they were mainly used in arid or semi-arid regions. At present, the use of ET covers has not been thoroughly investigated in humid areas. The purpose of this paper is to investigate the use of ETcovers in humid areas where there is an annual precipitation of more than 800 mm. Numerical analyses were carried out to investigate the influences of cover thickness, soil type, vegetation level and distribution of precipitation on performance of ET covers. Performance and applicability of capillary barriers and a new-type cover were analyzed. The results show that percolation decreases with an increasing cover thickness and an increasing vegetation level, but the increasing trend becomes unclear when certain thickness or LAI (leaf area index) is reached. Cover soil with a large capability of water storage is recommended to minimize percolation. ET covers are significantly influenced by distribution of precipitation and are more effective in areas where rainy season coincides with hot season. Capillary barriers are more efficient than monolithic covers. The new cover is better than the monolithic cover in performance and the final percolation is only 0.5% of the annual precipitation.展开更多
基金supported by the National Natural Science Foundation of China(51834008,52022109,52274307,and 21804319)National Key Research and Development Program of China(2021YFC2901100)+1 种基金Science Foundation of China University of Petroleum,Beijing(2462022QZDX008,2462021QNX2010,2462020YXZZ019 and 2462020YXZZ016)State Key Laboratory of Heavy Oil Processing(HON-KFKT2022-10).
文摘A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in the recovery process,NaOH was used to remove impurity.After impurity removal,the spent LiFePO_(4) cathode material was used as raw material under the H_(2)SO_(4) system,and the pressure oxidation leaching process was adopted to achieve the preferential leaching of lithium.The E-pH diagram of the Fe-P-Al-H_(2)O system can determine the stable region of each element in the recovery process of spent LiFePO_(4)Li-batteries.Under the optimal conditions(500 r·min^(-1),15 h,363.15 K,0.4 MPa,the liquid-solid ratio was 4:1 ml·g^(-1)and the acid-material ratio was 0.29),the leaching rate of Li was 99.24%,Fe,Al,and Ti were 0.10%,2.07%,and 0.03%,respectively.The Fe and P were precipitated and recovered as FePO_(4)·2H_(2)O.The kinetic analysis shows that the process of high-pressure acid leaching of spent LiFePO_(4) materials depends on the surface chemical reaction.Through the life cycle assessment(LCA)of the spent LiFePO_(4) whole recovery process,eight midpoint impact categories were selected to assess the impact of recovery process.The results can provide basic environmental information on production process for recycling industry.
基金financial support from the National Natural Science Foundation of China(Nos.21875224,22179121)the Fundamental Research Founds for National University,China University of Geosciences(Wuhan)。
文摘Sluggish kinetics of methanol oxidation reaction(MOR)and alkaline hydrogen evolution reaction(HER)even on precious Pt catalyst impede the large-scale commercialization of direct methanol fuel cell(DMFC)and water electrolysis technologies.Since both of MOR and alkaline HER are related to water dissociation reaction(WDR),it is reasonable to invite secondary active sites toward WDR to pair with Pt for boosted MOR and alkaline HER activity on Pt.Mo_(2)C and Ni species are therefore employed to engineer NiPt-Mo_(2)C active site pairs,which can be encapsulated in carbon cages,via an in-situ self-confinement strategy.Mass activity of Pt in NiPt-Mo_(2)C@C toward HER is boosted to11.3 A mg_(pt)^(-1),33 times higher than that of Pt/C.Similarly,MOR catalytic activity of Pt in NiPt-Mo_(2)C@C is also improved by 10.5 times and the DMFC maximum power density is hence improved by 9-fold.By considering the great stability,NiPt-Mo_(2)C@C exhibits great practical application potential in DMFCs and water electrolysers.
基金supported by the National Natural Science Foundation of China under Grant no.41975183,and Grant no.41875184 and Supported by a grant from State Key Laboratory of Resources and Environmental Information System.
文摘The numerous photos captured by low-price Internet of Things(IoT)sensors are frequently affected by meteorological factors,especially rainfall.It causes varying sizes of white streaks on the image,destroying the image texture and ruining the performance of the outdoor computer vision system.Existing methods utilise training with pairs of images,which is difficult to cover all scenes and leads to domain gaps.In addition,the network structures adopt deep learning to map rain images to rain-free images,failing to use prior knowledge effectively.To solve these problems,we introduce a single image derain model in edge computing that combines prior knowledge of rain patterns with the learning capability of the neural network.Specifically,the algorithm first uses Residue Channel Prior to filter out the rainfall textural features then it uses the Feature Fusion Module to fuse the original image with the background feature information.This results in a pre-processed image which is fed into Half Instance Net(HINet)to recover a high-quality rain-free image with a clear and accurate structure,and the model does not rely on any rainfall assumptions.Experimental results on synthetic and real-world datasets show that the average peak signal-to-noise ratio of the model decreases by 0.37 dB on the synthetic dataset and increases by 0.43 dB on the real-world dataset,demonstrating that a combined model reduces the gap between synthetic data and natural rain scenes,improves the generalization ability of the derain network,and alleviates the overfitting problem.
基金supported by a grant from State Key Laboratory of Resources and Environmental Information System,the National Natural Science Foundation of China,Grant Number 42201053the Program of China Scholarship Council,Grant Number 202209040027the Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant Number KYCX21_1000,which are highly appreciated by the authors.
文摘The loss of three-dimensional atmospheric electric field(3DAEF)data has a negative impact on thunderstorm detection.This paper proposes a method for thunderstorm point charge path recovery.Based on the relation-ship between a point charge and 3DAEF,we derive corresponding localization formulae by establishing a point charge localization model.Generally,point charge movement paths are obtained after fitting time series localization results.However,AEF data losses make it difficult to fit and visualize paths.Therefore,using available AEF data without loss as input,we design a hybrid model combining the convolutional neural network(CNN)and bi-directional long short-term memory(BiLSTM)to predict and recover the lost AEF.As paths are not present during sunny weather,we propose an extreme gradient boosting(XGBoost)model combined with a stacked autoencoder(SAE)to further determine the weather conditions of the recovered AEF.Specifically,historical AEF data of known weathers are input into SAE-XGBoost to obtain the distribution of predicted values(PVs).With threshold adjustments to reduce the negative effects of invalid PVs on SAE-XGBoost,PV intervals corresponding to different weathers are acquired.The recovered AEF is then input into the fixed SAE-XGBoost model.Whether paths need to be fitted is determined by the interval to which the output PV belongs.The results confirm that the proposed method can effectively recover point charge paths,with a maximum path deviation of approximately 0.018 km and a determination coefficient of 94.17%.This method provides a valid reference for visual thunderstorm monitoring.
文摘<strong>Objective:</strong> To investigate the occurrence pattern of abnormal bone density in male long-distance runners from several different regions of China, and provide a basis for elucidating the influences of geo-environmental differences on bone density. <strong>Methods:</strong> We employed a set of well-designed exclusion-inclusion criteria to recruit study subjects, in which compounding factors were managed and regional environmental traits were fully incorporated. WHO (World Health Organization) criteria for the diagnosis of osteoporosis were then used to examine the subjects to determine occurrence of abnormal bone density. The resulting data were analyzed using methods of spatial statistics, which included several approaches, such as spatial autocorrelation, hot spot analysis, and Geodetector Software analysis, to depict and analyze the spatial distribution of abnormal bone density in male athletes from different regions in China, thereby investigating the influences of geo-environmental factors (e.g., temperature, humidity, and altitude) on bone density. <strong>Results:</strong> A total of 685 subjects were effectively examined in this study, including 486 with normal bone density, 185 with osteopenia, and 14 with osteoporosis. Spatial distribution analysis revealed that the distribution of subjects with abnormal bone density overall exhibited a pattern indicating that the level of abnormal bone density in the eastern regions was higher than that in the western regions and that the levels of abnormal bone density in the southern and northern regions were higher than that in the middle regions. Spatial autocorrelation analysis revealed a Moran’s <em>I</em> = 0.136, <em>Z</em>-score = 1.114, and <em>P</em> value = 0.265 and indicated that the athletes with abnormal bone density were randomly distributed in each region. Hot spot analysis revealed that Tibet and Qinghai displayed distributions of cold spots. Geodetector Software analysis yielded a <em>Q</em> value for annual average temperature of 1.000 and a corresponding <em>P</em> value of 0.000, and the results revealed that temperature significantly affected bone density and that altitude, relative humidity, sunlight hours, and temperature variations displayed synergistic effects on bone density and could diminish the influences of temperature on bone density. <strong>Conclusion:</strong> Our data revealed that different regions displayed different distribution patterns of abnormal bone density such that the level in the eastern regions was higher than that in the western ones and that the levels in the southern and northern regions were higher than that in the middle regions;specifically, the provinces of Yunnan, Heilongjiang, Hainan, and Inner Mongolia had high rates of abnormal bone density, whereas Tibet and Qinghai had relatively good conditions of bone density. Our data suggested that suitable temperature changes and appropriate levels of temperature variations can decrease the occurrence rates of osteopenia and osteoporosis.
基金supported by the National Key Research and Development Program of China (2016YFC1102900)the National Natural Science Foundation of China (No.81620108006, No.81430012, and No.31700848)
文摘Bone defects caused by trauma,tumour resection,infection and congenital deformities,together with articular cartilage defects and cartilage–subchondral bone complex defects caused by trauma and degenerative diseases,remain great challenges for clinicians.Novel strategies utilising cell sheet technology to enhance bone and cartilage regeneration are being developed.The cell sheet technology has shown great clinical potential in regenerative medicine due to its effective preservation of cell–cell connections and extracellular matrix and its scaffold-free nature.This review will first introduce several widely used cell sheet preparation systems,including traditional approaches and recent improvements,as well as their advantages and shortcomings.Recent advances in utilising cell sheet technology to regenerate bone or cartilage defects and bone–cartilage complex defects will be reviewed.The key challenges and future research directions for the application of cell sheet technology in bone and cartilage regeneration will also be discussed.
基金supported by the Natural Science Foundation of Shandong Province of China(ZR2019MB006)National Natural Science Foundation of China(21303232)Natural Science Foundation of Guangdong Province(2018A030313460).
文摘With continuous consumption of nonrenewable energy,solar energy has been predicted to play an essential role in meeting the energy demands and miti gating environmental issues in the future.Despite being green,clean and pollution-free energy,solar energy cannot be adopted directly as it cannot provide sufficiently high energy density to work in the absence of machinery.Thus,it is necessary to develop an effective strategy to convert and store solar energy into chemical energy to achieve social sustainable development using solar energy as the main power source.Photocatalysis,in which semi conductor photocatalysts play a key role,is one of the most promising can didates for realising the effective utilisation of sunlight in a green,low-cost and environmentally friendly method.The photocatalytic efficiency of photo catalysts is considerably influenced by their compositions.Among the various heterostructures,Z-scheme heterojunction is one of the most interesting ar chitecture due to its outstanding performance and excellent artificial imitation of photosynthesis.Z-scheme photocatalysts have attracted considerable at tention in the past few decades.Herein,we review contemporary Z-scheme systems,with a particular focus on mechanistic breakthroughs,and highlight current state-of-the-art systems.Z-type photocatalysts are classified as tradi tional,all-solid-state,direct Z-schemes and S-scheme photocatalysts.The morphology,characterisation and working mechanism of each type of Z-scheme are discussed in detail.Furthermore,the applications of Z-scheme in photoelectrochemical water splitting,nitrogen fixation,pollutant degrada tion and carbon dioxide reduction are illustrated.Finally,we outline the main challenges and potential advances in Z-scheme architectures,as well as their future development directions.
基金financially supported by the Natural Science Foundation of Shandong Province of China (No. ZR2019MB006)the China Postdoctoral Science Foundation (Nos. 2018M632610 and 2017M610409)
文摘A Z-scheme heterostructure of Mo,W co-doped BiVO_(4)(Mo,W:BVO/BiOCl@C)was fabricated by a simple solid solution drying and calcination(SSDC)method.The heterostructure was characterized by X-ray diffraction(XRD),Fourier transform infrared(FTIR),X-ray photoelectron spectroscopy(XPS),etc.Under visible light irradiation,Mo,W:BVO/BiOCl@C heterostructure exhibits excellent photoelectrochemical capability compared with other as-prepared samples.The photocurrent density and the incident photon-to-electron conversion efficiency(IPCE)are about 5.4 and 9.0 times higher than those of pure BiVO_(4),respectively.The enhancement of the photoelectrochemical performance can be attributed to the construct of Z-scheme system,which is deduced from the radical trapping experiments.The Mo,W:BVO/BiOCl@C Z-scheme heterojunction enhances the visible-light absorption and reduces the recombination rate of charge carriers.This work provides an effective strategy to construct Z-scheme photoelectrodes for the application of photoelectrochemical water splitting.
文摘In the aluminum industry, secondary aluminum dross (SAD) is an inevitable solid residue, which usually contains 30 - 70 wt% Al2O3. In this work, Al(OH)3 was extracted from SAD through acid-leaching and alkali purification process. The as-obtained Al(OH)3 precipitation then was calcinated to synthesize porous γ-Al2O3 assisting by an agricultural waste biomass-corn straw as biotemplate. Effects of H2SO4 concentration, reaction temperature and time on the recovery of SAD were investigated. Furthermore, the dependence of calcination temperature on specific surface area, pore volume and content of porous γ-Al2O3 was analyzed. X-ray diffraction (XRD) and X-ray fluorescence (XRF) were used to inspect the phase compositions and their contents, respectively. Scanning electron microscopy (SEM) was employed to analyze the morphologies of the sintered porous γ-Al2O3. It was found that the highest recycle rate of aluminum from SAD was obtained under optimum conditions of 80°C, acid concentration of 1.6 mol/l, and reaction time of 5 h by acid process. The porous γ-Al2O3 with specific surface area, 261.22 m2/g and average pore diameter, 52.64 nm, was obtained under calcination at 850°C through mixing the as-obtained Al(OH)3 precipitation and corn straw.
基金financialy supported by the National Key R&D Program of China(2017YFB0307600,to Xinchang Pang)Key R&D and Promotion Special Program of Henan Province(Grant No.2018-966,to Xinchang Pang)+1 种基金the 111 project(D18023)1000 Young Talent(to Xinchang Pang)
文摘Nanocrystals provide a variety of size and shape-dependent properties with applications in a wide range of areas, gaining much attention in the past few years. However, due to the nature of the kinetic nanocrystal growth, the procedures often require strict experimental conditions and the shape and size of nanocrystals are difficult to control. In such context, organic templates, which are artificially modified or synthesized, can direct inorganic nanocrystal nucleation and growth to achieve desired shape, size and ultimately properties. In this review article, two general categories of organic templates used for making inorganic nanomaterials are discussed:biotemplates(e.g., peptide, lipid, DNA, and capsid) and block copolymer templates(e.g., block copolymer micelles, star-like block copolymer unimicelles). The goal of this review is to bridge these gaps and help foster a greater awareness of the range and applicability of different organic templating techniques within the field of nanotechnology.
文摘According to this paper, the dragon-shape strategy is the optimized option of China's future strategy with respect to the geographic distribution of regional economy.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2013CBA01603,2016YFA0300600,and 2016YFA0300903)the National Natural Science Foundation of China(Grant Nos.11574005,11774009,11222436,and 11574283)the National Postdoctoral Program for Innovative Talents of China(Grant No.BX201700012)funded by China Postdoctoral Science Foundation.
文摘Being parent materials of two-dimensional (2D) crystals, van der Waals layered materials have received revived interest. In most 2D materials, the interaction between electrons is negligible. Introducing the interaction can give rise to a variety of exotic properties. Here, via intercalating a van der Waals layered compound VS2, we find evidence for electron correlation by extensive magnetic, thermal, electrical, and thermoelectric characterizations. The low temperature Sommerfeld coefficient is 64 mJ·K-2·mol-1 and the Kadowaki-Woods ratio rKW^0.20a0. Both supports an enhancement of the electron correlation. The temperature dependences of the resistivity and thermopower indicate an important role played by the Kondo effect. The Kondo temperature TK is estimated to be around 8 K. Our results suggest intercalation as a potential means to engineer the electron correlation in van der Waals materials, as well as 2D materials.
基金funding for this study from Nature Science Foundation of China,Grant No.(51865047).
文摘Sunflower(Helianthus annuus L.)is one of the four major oil crops in the world and has high economic value.However,the lack of discrete element method(DEM)models and parameters for sunflower seeds hinders the application of DEM for computer simulation in the key working processes of sunflower seed sowing and harvesting.The present study was conducted on two varieties of sunflower,and the DEM model of sunflower seeds was established by using 3D scanning technology based on the distribution of triaxial dimensions and volumes of the geometric model of sunflower seeds.Similarly,the physical characteristics parameters of sunflower seeds were determined by physical tests and the simulation parameters were screened for significance based on the Plackett-Burman test.Our results show that the coefficient of static friction between sunflower seeds and the coefficient of rolling friction have significant effects on the repose angle of the simulation test.Furthermore,the optimal range of the significance parameters was further determined by the steepest climb test,and the second-order regression model of the significance parameters and the repose angle was obtained according to the Box-Behnken design test and Response Surface Methodology(RSM),with the repose angle measured by the physical test as the optimized target value to obtain the optimal parameter combination.Finally,a two-sample t-test for the repose angle of the physical test and the repose angle of the simulation test yielded P>0.05.Our results confirms that the repose angle obtained from simulation is not significantly different from the physical test value,and the relative errors between the repose angle of the simulation test and the physical test are 1.43%and 0.40%,respectively,for the optimal combination of parameters.Based on these results it can be concluded that the optimal parameters obtained from the calibration can be used for DEM simulation experiments related to the sunflower seed sowing and harvesting process.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.11822301,12192220,12192221 and 11833007)support from the NSFC(Grant No.12122306)+1 种基金support from the NSFC(Grant Nos.11733009 and U2031205)support by the science research grants from the China Manned Space Project through No.CMS-CSST-2021-A06。
文摘The fast blue optical transients(FBOTs)are a new population of extragalactic transients of unclear physical origin.A variety of mechanisms has been proposed including failed supernova explosion,shock interaction with a dense medium,young magnetar,accretion onto a compact object and stellar tidal disruption event,but none is conclusive.Here we report the discovery of a possible X-ray quasi-periodicity signal with a period of~250 s(at a significance level of 99.76%)in the brightest FBOT AT2018cow through the analysis of XMM-Newton/PN data.The signal is independently detected at the same frequency in the average power density spectrum from data taken from the Swift telescope,with observations covering from 6 to 37 days after the optical discovery,though the significance level is lower(94.26%).This suggests that the quasi-periodic oscillation(QPO)frequency may be stable over at least 1.1×10^(4)cycles.Assuming the~250 s QPO to be a scaled-down analog of that typically seen in stellar mass black holes,a black hole mass of~103–10^(5)solar masses could be inferred.The overall X-ray luminosity evolution could be modeled with a stellar tidal disruption by a black hole of~10^(4)solar masses,providing a viable mechanism to produce AT2018cow.Our findings suggest that other bright FBOTs may also harbor intermediate-mass black holes.
基金funded by the National Natural Science Foundation of China (51178260)Open Project of MOE Key Laboratory of Soft Soil and Geoenvironmental Engineering, Zhejiang University (2011P02)
文摘Natural soils are more durable than almost all man-made materials. Evapotranspiration (ET) covers use vegetated soil layers to store water until it is either evaporated from the soil surface or transpired through vegetation. ETcovers rely on the water storage capacity of soil layer, rather than low permeability materials, to minimize percolation. While the use of ET covers in landfills increased over the last decade, they were mainly used in arid or semi-arid regions. At present, the use of ET covers has not been thoroughly investigated in humid areas. The purpose of this paper is to investigate the use of ETcovers in humid areas where there is an annual precipitation of more than 800 mm. Numerical analyses were carried out to investigate the influences of cover thickness, soil type, vegetation level and distribution of precipitation on performance of ET covers. Performance and applicability of capillary barriers and a new-type cover were analyzed. The results show that percolation decreases with an increasing cover thickness and an increasing vegetation level, but the increasing trend becomes unclear when certain thickness or LAI (leaf area index) is reached. Cover soil with a large capability of water storage is recommended to minimize percolation. ET covers are significantly influenced by distribution of precipitation and are more effective in areas where rainy season coincides with hot season. Capillary barriers are more efficient than monolithic covers. The new cover is better than the monolithic cover in performance and the final percolation is only 0.5% of the annual precipitation.