Beta-diversity reflects the spatial changes in community species composition which helps to understand how communities are assembled and biodiversity is formed and maintained. Larch(Larix) forests, which are coniferou...Beta-diversity reflects the spatial changes in community species composition which helps to understand how communities are assembled and biodiversity is formed and maintained. Larch(Larix) forests, which are coniferous forests widely distributed in the mountainous and plateau areas in North and Southwest China, are critical for maintaining the environmental conditions and species diversity. Few studies of larch forests have examined the beta-diversity and its constituent components(species turnover and nestedness-resultant components). Here, we used 483 larch forest plots to determine the total betadiversity and its components in different life forms(i.e., tree, shrub, and herb) of larch forests in China and to evaluate the main drivers that underlie this beta-diversity. We found that total betadiversity of larch forests was mainly dependent on the species turnover component. In all life forms,total beta-diversity and the species turnover component increased with increasing geographic, elevational, current climatic, and paleoclimatic distances. In contrast, the nestedness-resultant component decreased across these same distances. Geographic and environmental factors explained 20%-25% of total beta-diversity, 18%-27% of species turnover component, and 4%-16% of nestedness-resultant component. Larch forest types significantly affected total beta-diversity and species turnover component. Taken together, our results indicate that life forms affect beta-diversity patterns of larch forests in China, and that beta-diversity is driven by both niche differentiation and dispersal limitation. Our findings help to greatly understand the mechanisms of community assemblies of larch forests in China.展开更多
This study investigates the interaction and influence of surface cracks on the spherical pressure hull of a deep-sea manned submersible.The finite element model of the spherical hull is established,and a semi-elliptic...This study investigates the interaction and influence of surface cracks on the spherical pressure hull of a deep-sea manned submersible.The finite element model of the spherical hull is established,and a semi-elliptical surface crack is inserted in the welding toe of the spherical hull as the main crack.Considering the combined effect of external uniform pressure and welding residual stress at the weld toe,the stress intensity factor(SIF)is obtained based on the M-integral method.Inserting disturbing cracks at different positions on the spherical hull surface,the interaction and influence between multi-cracks are revealed by numerical calculation.The results show that the existence of the disturbing crack has a great influence on the stress intensity factor of the main crack,and the influence is different with the different location of disturbing crack.The study of the interaction of multiple cracks under different interference factors and the influence of disturbing cracks on the main crack can provide some reference for future engineering applications.展开更多
Background:Larch(Larix Mill.)forests are widely distributed in the upper parts of mountainous areas in China,playing vital roles in constructing mountain landscapes and maintaining mountain environments.Despite their ...Background:Larch(Larix Mill.)forests are widely distributed in the upper parts of mountainous areas in China,playing vital roles in constructing mountain landscapes and maintaining mountain environments.Despite their importance,our knowledges on the large-scale patterns of structure characteristics and the relationships between different structure variables are unclear.In this paper,we investigated 155 plots from 11 natural larch forest types across the country to explore the biogeographic patterns of the structure characteristics and the allometric relationships between different structure variables for Chinese larch forests.Results:The structure characteristics were significantly different among larch forest types.For different larch forest types,the power function fits the relationships between tree height and diameter at breast height(DBH),average DBH and stem density,and taper and stem density well,but with different exponents among larch forest types.The power exponents of the allometric relationships between tree height and DBH for different larch forest types varied from 0.61 to 0.93(mean=0.86)by standard major axis regression(SMA),and from 0.51 to 0.78(mean=0.56)by ordinary least square regression(OLS).The 50%,75%and 95%quantile regression(QR)and OLS indicated that the average DBH and taper of the L.gmelinii forests,L.gmelinii var.principis-rupprechtii forests,and L.sibirica forests were significantly correlated with stem density.Conclusions:The relationship between tree height and DBH showed a power function relationship for all larch forest types in China,but with different exponents.Overall,stem density was negatively correlated with average DBH and taper.The Sect.Larix forests exhibited stand density effect.Our findings provide an important basis for recognizing the biogeographic patterns of structure factors and for the management of larch forests in China.展开更多
Aims There are different components of carbon(C)pools in a natural forest ecosystem:biomass,soil,litter and woody debris.We asked how these pools changed with elevation in one of China’s ecologically important forest...Aims There are different components of carbon(C)pools in a natural forest ecosystem:biomass,soil,litter and woody debris.We asked how these pools changed with elevation in one of China’s ecologically important forest ecosystem,i.e.beech(Fagus L.,Fagaceae)forests,and what were the underlying driving factors of such variation.Methods The four C pools in nine beech forests were investigated along an elevational gradient(1095–1930 m)on Mt.Fanjingshan in Guizhou Province,Southwest China.Variance partitioning was used to explore the relative effects of stand age,climate and other factors on C storage.In addition,we compared the four C pools to other beech forests in Guizhou Province and worldwide.Important Findings The total C pools of beech forest ecosystems ranged from 190.5 to 504.3 Mg C ha^(–1),mainly attributed to biomass C(accounting for 33.7–73.9%)and soil C(accounting for 23.9–65.5%).No more than 4%of ecosystem C pools were stored in woody debris(0.05–3.1%)and litter(0.2–0.7%).Ecosystem C storage increased significantly with elevation,where both the biomass and woody debris C pools increased with elevation,while those of litter and soil exhibited no such trend.For the Guizhou beech forests,climate and stand age were found to be key drivers of the elevational patterns of ecosystem and biomass C storage,while for beech forests globally,stand age was the most important predictor.Compared to beech forests worldwide,beech forests in Guizhou Province displayed a relatively higher biomass C accumulation rate,which may be explained by a much higher precipitation in this area.The present study provides basic data for understanding the C budgets of Chinese beech forests and their possible roles in regional C cycling and emphasizes the general importance of stand age and climate on C accumulation.展开更多
Deciduous oak forest is one of the typical vegetation types in temperate and subtropical mountain zones in China.However,the patterns and determinants of the structural characteristics of these forests remain poorly u...Deciduous oak forest is one of the typical vegetation types in temperate and subtropical mountain zones in China.However,the patterns and determinants of the structural characteristics of these forests remain poorly understood.We investigated 682 oak forest plots across China to characterize the community structures of the oak forests and analyze the underlying factors controlling their spatial patterns.Across all plots,the overall mean values were 13.7 cm,10.0 m,1468 stems/ha and 24.3 m^(2)/ha for the diameter at breast height(DBH),height,stem density and total basal area(TBA)of trees,respectively.The average species richness was 6 species/600 m^(2),10 species/100 m^(2) and 4 species/1 m^(2) for the tree,shrub and herb layers,respectively.As latitude increased,the mean tree height,stem density,TBA,tree species richness and shrub species richness decreased,and the mean DBH did not show a significant trend,while species richness of herbs increased significantly.Climatic and anthropogenic variables could explain more variations in mean DBH,mean tree height,TBA,tree species richness,shrub species richness than those in stem density and herb species richness.Further analysis showed that precipitation-related climatic factors were major factors shaping the spatial patterns of community structures.Our findings provide a basis for recognizing the biogeographic patterns of oak forest structures and their responses to global change in China.展开更多
基金supported by the Major Program for Basic Research Project of Yunnan Province (No. 202101BC070002)the National Natural Science Foundation of China (No. 32201426, No. 31988102)the National Science and Technology Basic Project of China (No. 2015FY210200)
文摘Beta-diversity reflects the spatial changes in community species composition which helps to understand how communities are assembled and biodiversity is formed and maintained. Larch(Larix) forests, which are coniferous forests widely distributed in the mountainous and plateau areas in North and Southwest China, are critical for maintaining the environmental conditions and species diversity. Few studies of larch forests have examined the beta-diversity and its constituent components(species turnover and nestedness-resultant components). Here, we used 483 larch forest plots to determine the total betadiversity and its components in different life forms(i.e., tree, shrub, and herb) of larch forests in China and to evaluate the main drivers that underlie this beta-diversity. We found that total betadiversity of larch forests was mainly dependent on the species turnover component. In all life forms,total beta-diversity and the species turnover component increased with increasing geographic, elevational, current climatic, and paleoclimatic distances. In contrast, the nestedness-resultant component decreased across these same distances. Geographic and environmental factors explained 20%-25% of total beta-diversity, 18%-27% of species turnover component, and 4%-16% of nestedness-resultant component. Larch forest types significantly affected total beta-diversity and species turnover component. Taken together, our results indicate that life forms affect beta-diversity patterns of larch forests in China, and that beta-diversity is driven by both niche differentiation and dispersal limitation. Our findings help to greatly understand the mechanisms of community assemblies of larch forests in China.
基金This work was supported by the State Key Program of National Natural Science of China(Grant No.51439004)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.19KJA530002)the Open Project Foundation of State Key Laboratory of Ocean Engineering(No.2006).
文摘This study investigates the interaction and influence of surface cracks on the spherical pressure hull of a deep-sea manned submersible.The finite element model of the spherical hull is established,and a semi-elliptical surface crack is inserted in the welding toe of the spherical hull as the main crack.Considering the combined effect of external uniform pressure and welding residual stress at the weld toe,the stress intensity factor(SIF)is obtained based on the M-integral method.Inserting disturbing cracks at different positions on the spherical hull surface,the interaction and influence between multi-cracks are revealed by numerical calculation.The results show that the existence of the disturbing crack has a great influence on the stress intensity factor of the main crack,and the influence is different with the different location of disturbing crack.The study of the interaction of multiple cracks under different interference factors and the influence of disturbing cracks on the main crack can provide some reference for future engineering applications.
基金the National Science and Technology Basic Project of China(No.2015FY210200)National Natural Science Foundation(No.31988102).
文摘Background:Larch(Larix Mill.)forests are widely distributed in the upper parts of mountainous areas in China,playing vital roles in constructing mountain landscapes and maintaining mountain environments.Despite their importance,our knowledges on the large-scale patterns of structure characteristics and the relationships between different structure variables are unclear.In this paper,we investigated 155 plots from 11 natural larch forest types across the country to explore the biogeographic patterns of the structure characteristics and the allometric relationships between different structure variables for Chinese larch forests.Results:The structure characteristics were significantly different among larch forest types.For different larch forest types,the power function fits the relationships between tree height and diameter at breast height(DBH),average DBH and stem density,and taper and stem density well,but with different exponents among larch forest types.The power exponents of the allometric relationships between tree height and DBH for different larch forest types varied from 0.61 to 0.93(mean=0.86)by standard major axis regression(SMA),and from 0.51 to 0.78(mean=0.56)by ordinary least square regression(OLS).The 50%,75%and 95%quantile regression(QR)and OLS indicated that the average DBH and taper of the L.gmelinii forests,L.gmelinii var.principis-rupprechtii forests,and L.sibirica forests were significantly correlated with stem density.Conclusions:The relationship between tree height and DBH showed a power function relationship for all larch forest types in China,but with different exponents.Overall,stem density was negatively correlated with average DBH and taper.The Sect.Larix forests exhibited stand density effect.Our findings provide an important basis for recognizing the biogeographic patterns of structure factors and for the management of larch forests in China.
基金supported by the National Key Research and Development Program of China(grant no.2017YFA0605101)Ministry of Science and Technology of China(grant no.2015FY210200)National Natural Science Foundation of China(grant nos.31700374,31621091).
文摘Aims There are different components of carbon(C)pools in a natural forest ecosystem:biomass,soil,litter and woody debris.We asked how these pools changed with elevation in one of China’s ecologically important forest ecosystem,i.e.beech(Fagus L.,Fagaceae)forests,and what were the underlying driving factors of such variation.Methods The four C pools in nine beech forests were investigated along an elevational gradient(1095–1930 m)on Mt.Fanjingshan in Guizhou Province,Southwest China.Variance partitioning was used to explore the relative effects of stand age,climate and other factors on C storage.In addition,we compared the four C pools to other beech forests in Guizhou Province and worldwide.Important Findings The total C pools of beech forest ecosystems ranged from 190.5 to 504.3 Mg C ha^(–1),mainly attributed to biomass C(accounting for 33.7–73.9%)and soil C(accounting for 23.9–65.5%).No more than 4%of ecosystem C pools were stored in woody debris(0.05–3.1%)and litter(0.2–0.7%).Ecosystem C storage increased significantly with elevation,where both the biomass and woody debris C pools increased with elevation,while those of litter and soil exhibited no such trend.For the Guizhou beech forests,climate and stand age were found to be key drivers of the elevational patterns of ecosystem and biomass C storage,while for beech forests globally,stand age was the most important predictor.Compared to beech forests worldwide,beech forests in Guizhou Province displayed a relatively higher biomass C accumulation rate,which may be explained by a much higher precipitation in this area.The present study provides basic data for understanding the C budgets of Chinese beech forests and their possible roles in regional C cycling and emphasizes the general importance of stand age and climate on C accumulation.
基金supported by the National Natural Science Foundation of China(no.31988102)the National Key Research and Development Program of China(no.2017YFC0503906)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(QYZDY-SSW-SMC011).
文摘Deciduous oak forest is one of the typical vegetation types in temperate and subtropical mountain zones in China.However,the patterns and determinants of the structural characteristics of these forests remain poorly understood.We investigated 682 oak forest plots across China to characterize the community structures of the oak forests and analyze the underlying factors controlling their spatial patterns.Across all plots,the overall mean values were 13.7 cm,10.0 m,1468 stems/ha and 24.3 m^(2)/ha for the diameter at breast height(DBH),height,stem density and total basal area(TBA)of trees,respectively.The average species richness was 6 species/600 m^(2),10 species/100 m^(2) and 4 species/1 m^(2) for the tree,shrub and herb layers,respectively.As latitude increased,the mean tree height,stem density,TBA,tree species richness and shrub species richness decreased,and the mean DBH did not show a significant trend,while species richness of herbs increased significantly.Climatic and anthropogenic variables could explain more variations in mean DBH,mean tree height,TBA,tree species richness,shrub species richness than those in stem density and herb species richness.Further analysis showed that precipitation-related climatic factors were major factors shaping the spatial patterns of community structures.Our findings provide a basis for recognizing the biogeographic patterns of oak forest structures and their responses to global change in China.