Brassinosteroids(BRs)are a class of steroid hormones with great potential for use in crop improvement.De-repression is usually one of the key events in hormone signaling.However,how the stability of GSK2,the central n...Brassinosteroids(BRs)are a class of steroid hormones with great potential for use in crop improvement.De-repression is usually one of the key events in hormone signaling.However,how the stability of GSK2,the central negative regulator of BR signaling in rice(Oryza sativa),is regulated by BRs remains elusive.Here,we identify the U-box ubiquitin ligase TUD1 as a GSK2-interacting protein by yeast two-hybrid screening.We show that TUD1 is able to directly interact with GSK2 and ubiquitinate the protein.Phenotypes of the tud1 mutant are highly similar to those of plants with constitutively activated GSK2.Consistent with this finding,GSK2 protein accumulates in the tud1 mutant compared with the wild type.In addition,inhibition of BR synthesis promotes GSK2 accumulation and suppresses TUD1 stability.By contrast,BRs can induce GSK2 degradation but promote TUD1 accumulation.Furthermore,the GSK2 degradation process is largely impaired in tud1 in response to BR.In conclusion,our study demonstrates the role of TUD1 in BR-induced GSK2 degradation,thereby advancing our understanding of a critical step in the BR signaling pathway of rice.展开更多
The rapid elongation of rice(Oryza sativa)coleoptile is pivotal for the plant plumule to evade hypoxia stress induced by submergence,a condition often arising from overirrigation,ponding,rainstorms,or flooding.While b...The rapid elongation of rice(Oryza sativa)coleoptile is pivotal for the plant plumule to evade hypoxia stress induced by submergence,a condition often arising from overirrigation,ponding,rainstorms,or flooding.While brassinosteroids(BRs)are recognized for their diverse roles in plant growth and development,their influence on coleoptile elongation under hypoxic conditions remains largely unexplored.In this study,we demonstrate the significant requirement of BRs for coleoptile elongation in deep water.During coleoptile development,Glycogen Synthase Kinase3-Like Kinase2(GSK2),the central inhibitor of BR signaling in rice,undergoes substantial suppression in deep water but induction in air.In contrast,the dephosphorylated form of BRASSINAZOLE RESISTANT1(OsBZR1),representing the active form of the key BR signaling transcription factor,is induced in water but suppressed in air.Remarkably,the knockout of GSK3-like kinase genes significantly enhances coleoptile elongation in deep water,strongly indicating a vital contribution of BR response to hypoxia-stimulated coleoptile elongation.Transcriptome analysis uncovers both BR-associated and BR-independent hypoxia responses,implicating substance metabolism,redox reactions,abiotic stress responses,and crosstalk with other hormones in the regulation of BR-induced hypoxia responses.In summary,our findings suggest that rice plumules rapidly elongate coleoptiles through the activation of BR response in deep water,enabling them to escape from submergence-induced hypoxia stress.展开更多
Japonica/geng and indica/xian are two major rice(Oryza sativa)subspecies with multiple divergent traits,but how these traits are related and interact within each subspecies remains elusive.Brassinosteroids(BRs)are a c...Japonica/geng and indica/xian are two major rice(Oryza sativa)subspecies with multiple divergent traits,but how these traits are related and interact within each subspecies remains elusive.Brassinosteroids(BRs)are a class of steroid phytohormones that modulate many important agronomic traits in rice.Here,using different physiological assays,we revealed that japonica rice exhibits an overall lower BR sensitivity than indica.Extensive screening of BR signaling genes led to the identification of a set of genes distributed throughout the primary BR signaling pathway with divergent polymorphisms.Among these,we demonstrate that the C38/T variant in BR Signaling Kinase2(OsBSK2),causing the amino acid change P13L,plays a central role in mediating differential BR signaling in japonica and indica rice.OsBSK2in indica plays a greater role in BR signaling than OsB SK2in japonica by affecting the auto-binding and protein accumulation of OsBSK2.Finally,we determined that OsBSK2 is involved in a number of divergent traits in japonica relative to indica rice,including grain shape,tiller number,cold adaptation,and nitrogen-use efficiency.Our study suggests that the natural variation in OsB SK2 plays a key role in the divergence of BR signaling,which underlies multiple divergent traits between japonica and indica.展开更多
基金supported by the Hainan Yazhou Bay Seed Laboratory(B21HJ0215)the National Natural Science Foundation of China(nos.U21A20208,31900177,31901534,31871587)+1 种基金the Central Publicinterest Scientific Institution Basal Research Fund(no.S2022ZD02)D.L.was funded by the China Postdoctoral Science Foundation(2020M670548).
文摘Brassinosteroids(BRs)are a class of steroid hormones with great potential for use in crop improvement.De-repression is usually one of the key events in hormone signaling.However,how the stability of GSK2,the central negative regulator of BR signaling in rice(Oryza sativa),is regulated by BRs remains elusive.Here,we identify the U-box ubiquitin ligase TUD1 as a GSK2-interacting protein by yeast two-hybrid screening.We show that TUD1 is able to directly interact with GSK2 and ubiquitinate the protein.Phenotypes of the tud1 mutant are highly similar to those of plants with constitutively activated GSK2.Consistent with this finding,GSK2 protein accumulates in the tud1 mutant compared with the wild type.In addition,inhibition of BR synthesis promotes GSK2 accumulation and suppresses TUD1 stability.By contrast,BRs can induce GSK2 degradation but promote TUD1 accumulation.Furthermore,the GSK2 degradation process is largely impaired in tud1 in response to BR.In conclusion,our study demonstrates the role of TUD1 in BR-induced GSK2 degradation,thereby advancing our understanding of a critical step in the BR signaling pathway of rice.
基金supported by STI 2030–Major Projects (2023ZD0407101)National Key Research and Development Program of China (2022YFD1201700)+1 种基金National Natural Science Foundation (U21A20208,32201704)Innovation Program of CAAS。
文摘The rapid elongation of rice(Oryza sativa)coleoptile is pivotal for the plant plumule to evade hypoxia stress induced by submergence,a condition often arising from overirrigation,ponding,rainstorms,or flooding.While brassinosteroids(BRs)are recognized for their diverse roles in plant growth and development,their influence on coleoptile elongation under hypoxic conditions remains largely unexplored.In this study,we demonstrate the significant requirement of BRs for coleoptile elongation in deep water.During coleoptile development,Glycogen Synthase Kinase3-Like Kinase2(GSK2),the central inhibitor of BR signaling in rice,undergoes substantial suppression in deep water but induction in air.In contrast,the dephosphorylated form of BRASSINAZOLE RESISTANT1(OsBZR1),representing the active form of the key BR signaling transcription factor,is induced in water but suppressed in air.Remarkably,the knockout of GSK3-like kinase genes significantly enhances coleoptile elongation in deep water,strongly indicating a vital contribution of BR response to hypoxia-stimulated coleoptile elongation.Transcriptome analysis uncovers both BR-associated and BR-independent hypoxia responses,implicating substance metabolism,redox reactions,abiotic stress responses,and crosstalk with other hormones in the regulation of BR-induced hypoxia responses.In summary,our findings suggest that rice plumules rapidly elongate coleoptiles through the activation of BR response in deep water,enabling them to escape from submergence-induced hypoxia stress.
基金supported by the Central Public-interest Scientific Institution Basal Research Fund(grant nos.S2022ZD02,Y2020XK16)the National Natural Science Foundation(grant nos.U21A20208,31871587,31900177,31901534)+1 种基金Hainan Yazhou Bay Seed Laboratory(grant no.B21HJ0215)supported by the China Postdoctoral Science Foundation(grant nos.2019M650917,2020T130709)。
文摘Japonica/geng and indica/xian are two major rice(Oryza sativa)subspecies with multiple divergent traits,but how these traits are related and interact within each subspecies remains elusive.Brassinosteroids(BRs)are a class of steroid phytohormones that modulate many important agronomic traits in rice.Here,using different physiological assays,we revealed that japonica rice exhibits an overall lower BR sensitivity than indica.Extensive screening of BR signaling genes led to the identification of a set of genes distributed throughout the primary BR signaling pathway with divergent polymorphisms.Among these,we demonstrate that the C38/T variant in BR Signaling Kinase2(OsBSK2),causing the amino acid change P13L,plays a central role in mediating differential BR signaling in japonica and indica rice.OsBSK2in indica plays a greater role in BR signaling than OsB SK2in japonica by affecting the auto-binding and protein accumulation of OsBSK2.Finally,we determined that OsBSK2 is involved in a number of divergent traits in japonica relative to indica rice,including grain shape,tiller number,cold adaptation,and nitrogen-use efficiency.Our study suggests that the natural variation in OsB SK2 plays a key role in the divergence of BR signaling,which underlies multiple divergent traits between japonica and indica.