A new landfill cover system,biochar-methanotrophs-clay(BMC)cover is recommended for reducing methane emissions at landfills.It also contributes to decreasing soil permeability and improving soil water retention in a l...A new landfill cover system,biochar-methanotrophs-clay(BMC)cover is recommended for reducing methane emissions at landfills.It also contributes to decreasing soil permeability and improving soil water retention in a long time,due to highly porous structure of biochar and the growth metabolism of methanotrophs.To determine the effects of biochar content,oxidation aging times and methane-filled days on hydraulic properties,a total of 60 groups of experiments were conducted.The saturated hydraulic conductivity(k_(sat))was obtained by flexible wall permeameter with controllable hydraulic head pressure.The results showed that the k_(sat)of BMC increased with increasing biochar content and oxidation aging times,while decreased with adding methane-filled days.The soil-water characteristic curves(SWCCs)were obtained with soil suction measured by the filter paper method.The results indicated the water retention capacity of MBC reduced with increasing oxidation aging times but increased with adding methane-filled days.Detected by mercury intrusion porosimetry(MIP),fourier transform infrared spectroscopy(FTIR)and scanning electron microscope(SEM),the differences displayed the changes of pore structures and extracellular polymeric substances(EPS).The oxidation aging of biochar increased the volume of pores,resulting in the increased k_(sat)and the decreased water retention capacity.However,the growing of methanotrophs decreased the volume of pores,resulting in the k_(sat)decreased and the water retention capacity increased due to EPS.No matter how many times the oxidation aging process was experienced,the BMC with longer methane-filled days exhibited relatively lower k_(sat)and better water retention capacity.This implied a more stable barrier capacity to reduce water infiltration in the long term.By combing a series of macro and micro experiments,this paper provides theoretical guidance for the application of biochar-methanotroph-clay mixture to landfill covers.展开更多
Objectives Gerontechnology has great potential in promoting older adults’well-being.With the accelerated aging process,gerontechnology has a promising market prospect.However,most technological developers and healthc...Objectives Gerontechnology has great potential in promoting older adults’well-being.With the accelerated aging process,gerontechnology has a promising market prospect.However,most technological developers and healthcare professionals attached importance to products’effectiveness,and ignored older adults’demands and user experience,which reduced older adults'adoption intention of gerontechnology use.The inclusion of older adults in the design process of technologies is essential to maximize the effect.This study explored older adults’demands for a self-developed intelligent medication administration system and proposed optimization schemes,thus providing reference to developing geriatric-friendly technologies and products.Methods A cross-sectional survey was conducted to explore older adults’technological demands for the self-developed intelligent medication administration system,and data were analyzed based on the Kano model.A self-made questionnaire was administered from July 2020 to October 2020 after participants used this system for two weeks.The study was registered with the Chinese Clinical Trial Registry(ChiCTR2000040644).Results A total of 354 older adults participated in the survey.Four items,namely larger font size,simpler operation process,scheduled medication reminders and reliable hardware,were classified as must-be attributes;three items,namely searching drug instructions through WeChat,more sensitive system and longer battery life,as attractive attributes;one item,viewing disease-related information through WeChat,as the one-dimensional attribute;and the rest were indifferent attributes,including simple and beautiful displays,blocking advertisements automatically,providing user privacy protection protocol,viewing personal medical information only by logged-in users,recording all the medications,ordering medications through WeChat.The satisfaction values were between 0.24 and 0.69,and dissatisfaction values were between 0.06 and 0.94.Conclusion This study suggested that older adults had personalized technology demands.Including their technological demands and desire may assist in decreasing the digital divide and promoting the satisfaction of e-health and/or m-health.Based on older adults’demands,our study proposed optimization schemes of the intelligent medication administration system,which may help developers design geriatric-friendly intelligent products and nurses to perform older adults-centered and efficient medication management.展开更多
Soil-water characteristics of Gaomiaozi(GMZ)Ca-bentonite at high suctions(3–287MPa)are measured by vapour equilibrium technique.The soil-water retention curve(SWRC)of samples with the same initial compaction states i...Soil-water characteristics of Gaomiaozi(GMZ)Ca-bentonite at high suctions(3–287MPa)are measured by vapour equilibrium technique.The soil-water retention curve(SWRC)of samples with the same initial compaction states is obtained in drying and wetting process.At high suctions,the hysteresis behaviour is not obvious in relationship between water content and suction,while the opposite holds between degree of saturation and suction.The suction variation can change its water retention behaviour and void ratio.Moreover,changes of void ratio can bring about changes in degree of saturation.Therefore,the total change in degree of saturation includes changes caused by suction and that by void ratio.In the space of degree of saturation and suction,the SWRC at constant void ratio shifts to the direction of higher suctions with decreasing void ratio.However,the relationship between water content and suction is less affected by changes of void ratio.The degree of saturation decreases approximately linearly with increasing void ratio at a constant suction.Moreover,the slope of the line decreases with increasing suction and they show an approximately linear relationship in semi-logarithmical scale.From this linear relationship,the variation of degree of saturation caused by the change in void ratio can be obtained.Correspondingly,SWRC at a constant void ratio can be determined from SWRC at different void ratios.展开更多
The activation of methane on graphite surfaces with monovacancies and 5-8-5 vacancies have been investigated using density functional theory. Sixteen different initial adsorption configurations were investigated to id...The activation of methane on graphite surfaces with monovacancies and 5-8-5 vacancies have been investigated using density functional theory. Sixteen different initial adsorption configurations were investigated to identify the most favorable activation site. It is found that methane tends to be activated on the defective graphite surfaces, and the most stable configuration is that methane activation happened in the center hole of the monovacancy site, with a reaction energy of 1.13 eV. Electron transfer and weaker electrostatic potential of the vacancy region indicate that carbon atom of methane tends to fill the vacancy and makes the system more stable.展开更多
Bentonite-sand mixtures are widely used in engineering barrier of deep geological disposal of high-level radioactive nuclear waste and anti-seepage barrier of civil geotechnical engineering.Under the action of groundw...Bentonite-sand mixtures are widely used in engineering barrier of deep geological disposal of high-level radioactive nuclear waste and anti-seepage barrier of civil geotechnical engineering.Under the action of groundwater solution infiltration and external stress,the hydro-mechanical(HM)behaviour of bentonitesand mixtures,i.e.the swelling characteristics and permeability,will change.Once the anti-seepage and filtration effect is weakened or lost,the pollutants will spread to the biosphere.Therefore,it is necessary to study the swelling characteristics and permeability of bentonite-sand mixtures under coupled mechanochemical(MC)effect and to establish corresponding prediction model.For this reason,swelling tests under salt solution with different concentrations are conducted on pure bentonite and its mixtures with 30%,70%and 90%sand contents,the compression tests are carried out on saturated samples,and the saturated permeability coefficient k of the sample under each load is calculated by Terzaghi’s one-dimensional consolidation theory.The concepts of true effective stress pe,montmorillonite void ratio em and critical sand content as are introduced to determine the em-pe relationship and finally the k-em relationship of bentonite-sand mixtures.It is found that when the sand content aas,the em-pe relationship of the mixture is linear and independent of the salt solution concentration,and when a>as,the em-pe relationship of bentonite-sand mixture is bi-linear with the true effective deviatoric stress pesa as the intersection.In addition,the em-k relationship also shows the linear trend when aas,and the slope of the line increases with the increase of the salt solution concentration.When a>as,the k-em relationship will deviate from the linear relationship.Moreover,the larger the sand content is,the farther the deviation is.On the basis of summing the regularity,a model for predicting the HM behaviour of bentonite-sand mixture under the coupled MC effect is proposed.By comparing the swelling and permeability test results with model prediction results of different types of bentonite and its sand mixtures,the predictive model is verified.The study on the HM behaviour of bentonite-sand mixtures under salt solution infiltration and the model establishment can provide experimental and theoretical basis for the design and construction of anti-seepage engineering by bentonite-sand mixtures.展开更多
: This paper presents the results of laboratory testing on a heavily compacted sand-bentonite mixture. To measure the soil-water retention curve (SWRC) of the mixture over a large range of suction, a pressure plate...: This paper presents the results of laboratory testing on a heavily compacted sand-bentonite mixture. To measure the soil-water retention curve (SWRC) of the mixture over a large range of suction, a pressure plate apparatus and filter papers were used. The obtained SWRC shows that the measurements via the two methods consistently agree with each other. By using a suction-controlled oedometer for unsaturated soils, a series of one-dimensional compression tests were performed on the unsaturated compacted sand-bentonite mixture at different constant suctions. The testing results indicate that the yield stress increases and compression index decreases with the increase of imposed suction. The results also demonstrate that the mixture wetted to saturation and subsequently dried to a certain suction level has a lower yield stress than that wetted directly to the same suction.展开更多
Gaomiaozi (GMZ) bentonite has been chosen as a possible matrix material of buffers/backfills in the deep geological disposal to isolate the high-level radioactive waste (HLRW) in China. In the Gaomiaozi deposit ar...Gaomiaozi (GMZ) bentonite has been chosen as a possible matrix material of buffers/backfills in the deep geological disposal to isolate the high-level radioactive waste (HLRW) in China. In the Gaomiaozi deposit area, calcium bentonite in the near surface zone and sodium bentonite in the deeper zone are observed. The swelling characteristics of GMZ sodium and calcium bentonites and their mixtures with sand wetted with distilled water were studied in the present work. The test results show that the relationship be- tween the void ratio and swelling pressure of compacted GMZ bentonite-sand mixtures at full saturation is independent of the initial conditions such as the initial dry density and water content, hut dependent on the ratio of bentonite to sand. An empirical method was accordingly proposed allowing the prediction of the swelling deformation and swelling pressure with different initial densities and bentonite-sand ratios when in saturated conditions. Finally, the swelling capacities of GMZ Na- and Ca-bentonites and Kunigel Na-bentonite are compared.展开更多
Background:The nitrogen isotope natural abundance(δ^(15)N)provides integrated information on ecosystem N dynamics,and carbon isotope natural abundance(δ^(13)C)has been used to infer how water-using processes of plan...Background:The nitrogen isotope natural abundance(δ^(15)N)provides integrated information on ecosystem N dynamics,and carbon isotope natural abundance(δ^(13)C)has been used to infer how water-using processes of plants change in terrestrial ecosystems.However,howδ^(13)C andδ^(15)N abundances in plant life and soils respond to N addition and water availability change is still unclear.Thus,δ^(13)C andδ^(15)N abundances in plant life and soils were used to investigate the effects of long-time(10 years)N addition(+50 kg N·ha^(−1)·yr^(−1)and precipitation reduction(−30%of throughfall)in forest C and N cycling traits in a temperate forest in northern China.Results:We analyzed theδ^(13)C andδ^(15)N values of dominant plant foliage,litterfall,fungal sporophores,roots,and soils in the study.The results showed thatδ^(15)N values of foliage,litterfall,and surface soil layer’s(0–10 cm)total N were significantly increased by N addition,whileδ^(15)N values of fine roots and coarse roots were considerably decreased.Nitrogen addition also significantly increased theδ^(13)C value of fine roots and total N concentration of the surface soil layer compared with the control.The C concentration,δ^(13)C,andδ^(15)N values of foliage andδ^(15)N values of fine roots were significantly increased by precipitation reduction,while N concentration of foliage and litterfall significantly decreased.The combined effects of N addition and precipitation reduction significantly increased theδ^(13)C andδ^(15)N values of foliage as well as theδ^(15)N values of fine roots andδ^(13)C values of litterfall.Furthermore,foliarδ^(15)N values were significantly correlated with foliageδ^(13)C values,surface soilδ^(15)N values,surface soil C concentration,and N concentrations.Nitrogen concentrations andδ^(13)C values of foliage were significantly correlated withδ^(15)N values and N concentrations of fine roots.Conclusions:This indicates that plants increasingly take up the heavier 15N under N addition and the heavier 13C and 15N under precipitation reduction,suggesting that N addition and precipitation reduction may lead to more open forest ecosystem C and N cycling and affect plant nutrient acquisition strategies.展开更多
This study proposes three possible keel-surface layer combinations to implement a new type of thermally insulating decorative wall system.A set of 8 samples has been studied.In particular,through theoretical calculati...This study proposes three possible keel-surface layer combinations to implement a new type of thermally insulating decorative wall system.A set of 8 samples has been studied.In particular,through theoretical calculations,simulations,and experimental verification,the influence of different types of connecting structures on the overall thermal performance of the wall system has been determined.It has been found that a proper combination of these elements can meet existing energy-saving standards and effectively reduce the energy loss caused by thermal bridges due to the installation of steel keels at the edges of integrated wall panels.展开更多
Research on solvent effects is an important and long-standing topic,but there still is some room,especially for the special solvent effect of fluoroalcohols.In this work,we investigated the stability of phenoxyl radic...Research on solvent effects is an important and long-standing topic,but there still is some room,especially for the special solvent effect of fluoroalcohols.In this work,we investigated the stability of phenoxyl radical in monohydric alcohol solvents through in-situ electron paramagnetic resonance detections.The decay behavior of phenoxyl radical showed a reasonable relationship with the mesoscopic structure of alcohols,characterized by smalland wide-angle X-ray scattering.Moreover,the distinct solvent effects of fluoroalcohols were emphasized,and the significant influence of van der Waals distance in the solvents was suggested.Overall,the stability of phenoxyl radical in alcohols was quantified and correlated with the solvent structures.We believe that the established method for stability study on radicals will encourage solvent effect studies on various organic reactions,and the proposed solvent effects in fluoroalcohols may inspire the development of green solvents in both industrial conversions and organic synthesis.展开更多
Catalytic wet air oxidation(CWAO)coupled desalination technology provides a possibility for the effective and economic degradation of high salinity and high organic wastewater.Chloride widely occurs in natural and was...Catalytic wet air oxidation(CWAO)coupled desalination technology provides a possibility for the effective and economic degradation of high salinity and high organic wastewater.Chloride widely occurs in natural and wastewaters,and its high content jeopardizes the efficacy of Advanced oxidation process(AOPs).Thus,a novel chlorine ion resistant catalyst Bsite Ru doped LaFe_(1-x)Ru_(x)O_(3-)δin CWAO treatment of chlorine ion wastewater was examined.Especially,LaFe_(0.85)Ru_(0.15)O_(3-δ)was 45.5% better than that of the 6%RuO_(2)@TiO_(2)(commercial carrier)on total organic carbon(TOC)removal.Also,doped catalysts LaFe_(1-x)Ru_(x)O_(3-)δshowed better activity than supported catalysts RuO_(2)@LaFeO_(3) and RuO_(2)@TiO_(2) with the same Ru content.Moreover,LaFe_(0.85)Ru_(0.15)O_(3-)δhas novel chlorine ion resistance no matter the concentration of Cl^(−) and no Ru dissolves after the reaction.X-ray diffraction(XRD)refinement,X-ray photoelectron spectroscopy(XPS),transmission electron microscope(TEM),and X-ray absorption fine structure(XAFS)measurements verified the structure of LaFe_(0.85)Ru_(0.15)O_(3-)δ.Kinetic data and density functional theory(DFT)proved that Fe is the site of acetic acid oxidation and adsorption of chloride ions.The existence of Fe in LaFe_(0.85)Ru_(0.15)O_(3-)δcould adsorb chlorine ion(catalytic activity inhibitor),which can protect the Ru site and other active oxygen species to exert catalytic activity.This work is essential for the development of chloride-resistant catalyst in CWAO.展开更多
Heterogeneous Pd nanocatalysts are efficient catalysts for the Heck reaction but require multi-step,sophisticated procedures and harsh reaction conditions.In this work,a green and facile strategy has been developed to...Heterogeneous Pd nanocatalysts are efficient catalysts for the Heck reaction but require multi-step,sophisticated procedures and harsh reaction conditions.In this work,a green and facile strategy has been developed to decorate Pd nanoparticles on polydopamine(PDA)-coated multi-walled carbon nanotubes(Pd/CNTs-PDA)via a one-pot method.The obtained nanoparticles were characterized by various techniques including transmission electron microscopy,X-ray diffraction,and X-ray photoelectron spectroscopy,which proved that Pd NPs are well-dispersed on the PDA and between the surfaces of the PDA and CNTs.The resultant Pd/CNTs-PDA catalysts exhibit excellent catalytic reactivity toward the Heck reaction at low temperatures.Moreover,by DFT simulation,we found that during the PDA polymerization process,a large number of unsaturated—N=and C=O species are more active than the groups on the PDA end product to anchor Pd NPs.The results provide evidence that the catalyst synthesized by the onepot method exhibited good activity because sufficient active sites could be created to effectively promote Pd NPs dispersion during the dopamine polymerization process.Additionally,the Pd/CNTs-PDA catalyst was successfully employed in Heck cross-coupling reactions with various functionalized substrates.This method opens a window for the fabrication of high-performance nanocomposite catalysts under mild conditions using simple methods and has several potential applications.展开更多
Gas foil bearing faces severe and complex thermal-fluid–solid coupling issues when in ultra-high speed and miniaturized impeller machineries.In this study,a Thermo-Elasto-Hydrodynamic(TEHD)analysis of a specific mult...Gas foil bearing faces severe and complex thermal-fluid–solid coupling issues when in ultra-high speed and miniaturized impeller machineries.In this study,a Thermo-Elasto-Hydrodynamic(TEHD)analysis of a specific multi-layer gas foil thrust bearing on the continuous loading process within a steady rotational speed is numerically investigated by a three-dimensional thermal-fluid–solid coupling method.Results indicate that the multi-layer foil exhibits nonlinear overall stiffness,with the thrust bottom foil serving as the primary elastic deformation structure,while the thrust top foil maintains a well-defined aerodynamic shape during a loading process,which helps reduce frictional damage and achieve an adequate loading capacity.For low loads,the fluctuation of the gas film is extremely sensitive,and it weakens dramatically as the load increases.The viscous heating and friction torque exhibit a linear relationship with an increasing bearing load after a rapid growth.Depending on the exact stacking sequence and contact position of the multi-layer gas foil,the overlapping configuration allows for efficient transfer of viscous-shearing heat accumulated at the smallest air film through thermal conduction while providing elastic support.Due to the strong inhomogeneity of the viscous heat under varying loads,the temperature distribution on the top foil surface shows pronounced variations,while the difference between the peak and average temperatures of the thrust plate and top foil surfaces widens substantially with an increasing load.展开更多
Current resolved structures of GPCRs and G protein complexes provided important insights into G protein activation. However, the binding or dissociation of GPCRs with G protein is instantaneous and highly dynamic in t...Current resolved structures of GPCRs and G protein complexes provided important insights into G protein activation. However, the binding or dissociation of GPCRs with G protein is instantaneous and highly dynamic in the intracellular environment. The conformational dynamic of G protein still needs to be addressed. In this study, we applied ^(19)F solution NMR spectroscopy to monitor the conformational changes of G protein upon interact with detergent mimicking membrane and receptor. Our results show that there are two states equilibria in the G_(α)in apo states. The interaction of G_(α)with detergents will accelerate this conformational transformation and induce a state that tends to bind to GPCRs. Finally, the G_(α)proteins presented a fully activation state when they coupled to GPCRs.展开更多
Tyrosine Phosphorylation(pTyr)is a critical and ubiquitous regulation mechanism in biology that plays a central role in controlling intracellular signaling networks.Precise recognition and specific detection of pTyr p...Tyrosine Phosphorylation(pTyr)is a critical and ubiquitous regulation mechanism in biology that plays a central role in controlling intracellular signaling networks.Precise recognition and specific detection of pTyr peptides have been of great importance for both discoveries of disease biomarkers and screening of therapeutic drugs,especially cancers.Here we report a label-free,versatile,realtime,and high-throughput detection strategy for phosphopeptide(PP)based on reversible configuration freeze of a unique hemicyanine-labeled 2-(2′-hydroxyphenyl)-4-methyloxazole(H-HPMO).By taking advantage of the“OFF–ON”transition of fluorescence,H-HPMO–Cu^(2+)complex displays a highly sensitive and selective response to PPs with modified sites on serine,threonine,and tyrosine.Specific recognition of Tyr PPs is achieved by performing a simple logic gate operation and introducing Ca^(2+)interference as an input.This PP detection approach is universal for various peptide sequences and displays high potential in large-scale kinase inhibitor screening,which will promote the development of targeted anticancer drugs.展开更多
Facing the growing global challenge posed by cancer,the quest for more accurate and potent cancer diagnostic and therapeutic strategies continues to require a multidisciplinary integration approach.This review firstly...Facing the growing global challenge posed by cancer,the quest for more accurate and potent cancer diagnostic and therapeutic strategies continues to require a multidisciplinary integration approach.This review firstly summarizes various types of nanoparticles in cancer research.Subsequently,it offers a comprehensive overview of signalenhancing techniques for visualizing in situ tumors,along with multimodal diagnostic methods for detecting metastases.As for tumor therapy,cutting-edge drug delivery methods that can cross biological barriers and the pinpoint targeting of tumor lesions for precise medical intervention are introduced.Within the domain of therapeutic diagnostics,we elucidate the theoretical underpinnings and structural paradigms that underlie a spectrum of advanced diagnostic and therapeutic modalities.Additionally,we present a compendium of publications delineating the clinical applications of each nano-based theragnostic integration platform.Finally,this comprehensive review discusses the safety concerns pertaining to the clinical application of nanoparticles and proposes some strategic recommendations to enhance the precision and safety of theragnostic-guided,nanotechnology-based clinical practices.A deeper understanding of nanomaterials,together with intimate interdisciplinary collaborations,nano-wave will most probably guide human beings to win the battle against cancers.展开更多
基金National Natural Science Foundation of China(Grant No.41977214)the Research Platform Open Fund Project of Zhejiang Industry and Trade Vocation College(Kf202202).
文摘A new landfill cover system,biochar-methanotrophs-clay(BMC)cover is recommended for reducing methane emissions at landfills.It also contributes to decreasing soil permeability and improving soil water retention in a long time,due to highly porous structure of biochar and the growth metabolism of methanotrophs.To determine the effects of biochar content,oxidation aging times and methane-filled days on hydraulic properties,a total of 60 groups of experiments were conducted.The saturated hydraulic conductivity(k_(sat))was obtained by flexible wall permeameter with controllable hydraulic head pressure.The results showed that the k_(sat)of BMC increased with increasing biochar content and oxidation aging times,while decreased with adding methane-filled days.The soil-water characteristic curves(SWCCs)were obtained with soil suction measured by the filter paper method.The results indicated the water retention capacity of MBC reduced with increasing oxidation aging times but increased with adding methane-filled days.Detected by mercury intrusion porosimetry(MIP),fourier transform infrared spectroscopy(FTIR)and scanning electron microscope(SEM),the differences displayed the changes of pore structures and extracellular polymeric substances(EPS).The oxidation aging of biochar increased the volume of pores,resulting in the increased k_(sat)and the decreased water retention capacity.However,the growing of methanotrophs decreased the volume of pores,resulting in the k_(sat)decreased and the water retention capacity increased due to EPS.No matter how many times the oxidation aging process was experienced,the BMC with longer methane-filled days exhibited relatively lower k_(sat)and better water retention capacity.This implied a more stable barrier capacity to reduce water infiltration in the long term.By combing a series of macro and micro experiments,this paper provides theoretical guidance for the application of biochar-methanotroph-clay mixture to landfill covers.
基金financially supported by the National Natural Science Foundation of China(21476145)the National 973 Program of Ministry of Sciences and Technologies of China(2011CB201202)
基金Funding was provided by Chongqing Health Commission,and Chongqing Science and Technology Bureau(grant number 2020MSXM077).
文摘Objectives Gerontechnology has great potential in promoting older adults’well-being.With the accelerated aging process,gerontechnology has a promising market prospect.However,most technological developers and healthcare professionals attached importance to products’effectiveness,and ignored older adults’demands and user experience,which reduced older adults'adoption intention of gerontechnology use.The inclusion of older adults in the design process of technologies is essential to maximize the effect.This study explored older adults’demands for a self-developed intelligent medication administration system and proposed optimization schemes,thus providing reference to developing geriatric-friendly technologies and products.Methods A cross-sectional survey was conducted to explore older adults’technological demands for the self-developed intelligent medication administration system,and data were analyzed based on the Kano model.A self-made questionnaire was administered from July 2020 to October 2020 after participants used this system for two weeks.The study was registered with the Chinese Clinical Trial Registry(ChiCTR2000040644).Results A total of 354 older adults participated in the survey.Four items,namely larger font size,simpler operation process,scheduled medication reminders and reliable hardware,were classified as must-be attributes;three items,namely searching drug instructions through WeChat,more sensitive system and longer battery life,as attractive attributes;one item,viewing disease-related information through WeChat,as the one-dimensional attribute;and the rest were indifferent attributes,including simple and beautiful displays,blocking advertisements automatically,providing user privacy protection protocol,viewing personal medical information only by logged-in users,recording all the medications,ordering medications through WeChat.The satisfaction values were between 0.24 and 0.69,and dissatisfaction values were between 0.06 and 0.94.Conclusion This study suggested that older adults had personalized technology demands.Including their technological demands and desire may assist in decreasing the digital divide and promoting the satisfaction of e-health and/or m-health.Based on older adults’demands,our study proposed optimization schemes of the intelligent medication administration system,which may help developers design geriatric-friendly intelligent products and nurses to perform older adults-centered and efficient medication management.
基金the National Natural Sciences Foundation of China (No. 41102163)
文摘Soil-water characteristics of Gaomiaozi(GMZ)Ca-bentonite at high suctions(3–287MPa)are measured by vapour equilibrium technique.The soil-water retention curve(SWRC)of samples with the same initial compaction states is obtained in drying and wetting process.At high suctions,the hysteresis behaviour is not obvious in relationship between water content and suction,while the opposite holds between degree of saturation and suction.The suction variation can change its water retention behaviour and void ratio.Moreover,changes of void ratio can bring about changes in degree of saturation.Therefore,the total change in degree of saturation includes changes caused by suction and that by void ratio.In the space of degree of saturation and suction,the SWRC at constant void ratio shifts to the direction of higher suctions with decreasing void ratio.However,the relationship between water content and suction is less affected by changes of void ratio.The degree of saturation decreases approximately linearly with increasing void ratio at a constant suction.Moreover,the slope of the line decreases with increasing suction and they show an approximately linear relationship in semi-logarithmical scale.From this linear relationship,the variation of degree of saturation caused by the change in void ratio can be obtained.Correspondingly,SWRC at a constant void ratio can be determined from SWRC at different void ratios.
基金supported by the National Basic Research Program of China(973Program)(2011CB201202)
文摘The activation of methane on graphite surfaces with monovacancies and 5-8-5 vacancies have been investigated using density functional theory. Sixteen different initial adsorption configurations were investigated to identify the most favorable activation site. It is found that methane tends to be activated on the defective graphite surfaces, and the most stable configuration is that methane activation happened in the center hole of the monovacancy site, with a reaction energy of 1.13 eV. Electron transfer and weaker electrostatic potential of the vacancy region indicate that carbon atom of methane tends to fill the vacancy and makes the system more stable.
基金National Natural Science Foundation of China(Grant No.41977214)the National Key R&D Program of China(Grant No.2019YFC1520500)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z013008)for the financial supports。
文摘Bentonite-sand mixtures are widely used in engineering barrier of deep geological disposal of high-level radioactive nuclear waste and anti-seepage barrier of civil geotechnical engineering.Under the action of groundwater solution infiltration and external stress,the hydro-mechanical(HM)behaviour of bentonitesand mixtures,i.e.the swelling characteristics and permeability,will change.Once the anti-seepage and filtration effect is weakened or lost,the pollutants will spread to the biosphere.Therefore,it is necessary to study the swelling characteristics and permeability of bentonite-sand mixtures under coupled mechanochemical(MC)effect and to establish corresponding prediction model.For this reason,swelling tests under salt solution with different concentrations are conducted on pure bentonite and its mixtures with 30%,70%and 90%sand contents,the compression tests are carried out on saturated samples,and the saturated permeability coefficient k of the sample under each load is calculated by Terzaghi’s one-dimensional consolidation theory.The concepts of true effective stress pe,montmorillonite void ratio em and critical sand content as are introduced to determine the em-pe relationship and finally the k-em relationship of bentonite-sand mixtures.It is found that when the sand content aas,the em-pe relationship of the mixture is linear and independent of the salt solution concentration,and when a>as,the em-pe relationship of bentonite-sand mixture is bi-linear with the true effective deviatoric stress pesa as the intersection.In addition,the em-k relationship also shows the linear trend when aas,and the slope of the line increases with the increase of the salt solution concentration.When a>as,the k-em relationship will deviate from the linear relationship.Moreover,the larger the sand content is,the farther the deviation is.On the basis of summing the regularity,a model for predicting the HM behaviour of bentonite-sand mixture under the coupled MC effect is proposed.By comparing the swelling and permeability test results with model prediction results of different types of bentonite and its sand mixtures,the predictive model is verified.The study on the HM behaviour of bentonite-sand mixtures under salt solution infiltration and the model establishment can provide experimental and theoretical basis for the design and construction of anti-seepage engineering by bentonite-sand mixtures.
基金Supported by the Innovative Foundation for Graduate Students at Shanghai University of China(SHUCX080168)the National Science Foundationof China(10972130)
文摘: This paper presents the results of laboratory testing on a heavily compacted sand-bentonite mixture. To measure the soil-water retention curve (SWRC) of the mixture over a large range of suction, a pressure plate apparatus and filter papers were used. The obtained SWRC shows that the measurements via the two methods consistently agree with each other. By using a suction-controlled oedometer for unsaturated soils, a series of one-dimensional compression tests were performed on the unsaturated compacted sand-bentonite mixture at different constant suctions. The testing results indicate that the yield stress increases and compression index decreases with the increase of imposed suction. The results also demonstrate that the mixture wetted to saturation and subsequently dried to a certain suction level has a lower yield stress than that wetted directly to the same suction.
基金financially supported by the National Natural Science Foundation of China(Grants Nos.11272194 and 41102163
文摘Gaomiaozi (GMZ) bentonite has been chosen as a possible matrix material of buffers/backfills in the deep geological disposal to isolate the high-level radioactive waste (HLRW) in China. In the Gaomiaozi deposit area, calcium bentonite in the near surface zone and sodium bentonite in the deeper zone are observed. The swelling characteristics of GMZ sodium and calcium bentonites and their mixtures with sand wetted with distilled water were studied in the present work. The test results show that the relationship be- tween the void ratio and swelling pressure of compacted GMZ bentonite-sand mixtures at full saturation is independent of the initial conditions such as the initial dry density and water content, hut dependent on the ratio of bentonite to sand. An empirical method was accordingly proposed allowing the prediction of the swelling deformation and swelling pressure with different initial densities and bentonite-sand ratios when in saturated conditions. Finally, the swelling capacities of GMZ Na- and Ca-bentonites and Kunigel Na-bentonite are compared.
基金from National Natural Science Foundation of China(Grant Nos:41773075,41575137,31370494,31170421).
文摘Background:The nitrogen isotope natural abundance(δ^(15)N)provides integrated information on ecosystem N dynamics,and carbon isotope natural abundance(δ^(13)C)has been used to infer how water-using processes of plants change in terrestrial ecosystems.However,howδ^(13)C andδ^(15)N abundances in plant life and soils respond to N addition and water availability change is still unclear.Thus,δ^(13)C andδ^(15)N abundances in plant life and soils were used to investigate the effects of long-time(10 years)N addition(+50 kg N·ha^(−1)·yr^(−1)and precipitation reduction(−30%of throughfall)in forest C and N cycling traits in a temperate forest in northern China.Results:We analyzed theδ^(13)C andδ^(15)N values of dominant plant foliage,litterfall,fungal sporophores,roots,and soils in the study.The results showed thatδ^(15)N values of foliage,litterfall,and surface soil layer’s(0–10 cm)total N were significantly increased by N addition,whileδ^(15)N values of fine roots and coarse roots were considerably decreased.Nitrogen addition also significantly increased theδ^(13)C value of fine roots and total N concentration of the surface soil layer compared with the control.The C concentration,δ^(13)C,andδ^(15)N values of foliage andδ^(15)N values of fine roots were significantly increased by precipitation reduction,while N concentration of foliage and litterfall significantly decreased.The combined effects of N addition and precipitation reduction significantly increased theδ^(13)C andδ^(15)N values of foliage as well as theδ^(15)N values of fine roots andδ^(13)C values of litterfall.Furthermore,foliarδ^(15)N values were significantly correlated with foliageδ^(13)C values,surface soilδ^(15)N values,surface soil C concentration,and N concentrations.Nitrogen concentrations andδ^(13)C values of foliage were significantly correlated withδ^(15)N values and N concentrations of fine roots.Conclusions:This indicates that plants increasingly take up the heavier 15N under N addition and the heavier 13C and 15N under precipitation reduction,suggesting that N addition and precipitation reduction may lead to more open forest ecosystem C and N cycling and affect plant nutrient acquisition strategies.
基金The research content of this paper comes from the Urban and Rural Construction Science and Technology Project of Shandong Province,China,Subject No.2018-K9-07.
文摘This study proposes three possible keel-surface layer combinations to implement a new type of thermally insulating decorative wall system.A set of 8 samples has been studied.In particular,through theoretical calculations,simulations,and experimental verification,the influence of different types of connecting structures on the overall thermal performance of the wall system has been determined.It has been found that a proper combination of these elements can meet existing energy-saving standards and effectively reduce the energy loss caused by thermal bridges due to the installation of steel keels at the edges of integrated wall panels.
基金supported by the National Natural Science Foundation of China(grant numbers 22103068 and 22303079)Zhejiang Provincial Natural Science Foundation of China(grant number LGC22B050010)the National Key R&D Program of China(grant number 2022YFA1503200)
文摘Research on solvent effects is an important and long-standing topic,but there still is some room,especially for the special solvent effect of fluoroalcohols.In this work,we investigated the stability of phenoxyl radical in monohydric alcohol solvents through in-situ electron paramagnetic resonance detections.The decay behavior of phenoxyl radical showed a reasonable relationship with the mesoscopic structure of alcohols,characterized by smalland wide-angle X-ray scattering.Moreover,the distinct solvent effects of fluoroalcohols were emphasized,and the significant influence of van der Waals distance in the solvents was suggested.Overall,the stability of phenoxyl radical in alcohols was quantified and correlated with the solvent structures.We believe that the established method for stability study on radicals will encourage solvent effect studies on various organic reactions,and the proposed solvent effects in fluoroalcohols may inspire the development of green solvents in both industrial conversions and organic synthesis.
基金supported by the Natural Science Foundation of Liaoning Province (No. 2020-BS-012)the National Natural Science Foundation of China (No. 51878643)+2 种基金the Dalian Institute of Chemical Physics & Qingdao Institute of Bioenergy and Bioprocess Technology (DICP&QIBEBT) (No. UN201809)the Scientific Research Common Program of Beijing Municipal Commission of Education (No. KM202010017006)Talents Project of Beijing Organization Department (No. 2018000020124G091)。
文摘Catalytic wet air oxidation(CWAO)coupled desalination technology provides a possibility for the effective and economic degradation of high salinity and high organic wastewater.Chloride widely occurs in natural and wastewaters,and its high content jeopardizes the efficacy of Advanced oxidation process(AOPs).Thus,a novel chlorine ion resistant catalyst Bsite Ru doped LaFe_(1-x)Ru_(x)O_(3-)δin CWAO treatment of chlorine ion wastewater was examined.Especially,LaFe_(0.85)Ru_(0.15)O_(3-δ)was 45.5% better than that of the 6%RuO_(2)@TiO_(2)(commercial carrier)on total organic carbon(TOC)removal.Also,doped catalysts LaFe_(1-x)Ru_(x)O_(3-)δshowed better activity than supported catalysts RuO_(2)@LaFeO_(3) and RuO_(2)@TiO_(2) with the same Ru content.Moreover,LaFe_(0.85)Ru_(0.15)O_(3-)δhas novel chlorine ion resistance no matter the concentration of Cl^(−) and no Ru dissolves after the reaction.X-ray diffraction(XRD)refinement,X-ray photoelectron spectroscopy(XPS),transmission electron microscope(TEM),and X-ray absorption fine structure(XAFS)measurements verified the structure of LaFe_(0.85)Ru_(0.15)O_(3-)δ.Kinetic data and density functional theory(DFT)proved that Fe is the site of acetic acid oxidation and adsorption of chloride ions.The existence of Fe in LaFe_(0.85)Ru_(0.15)O_(3-)δcould adsorb chlorine ion(catalytic activity inhibitor),which can protect the Ru site and other active oxygen species to exert catalytic activity.This work is essential for the development of chloride-resistant catalyst in CWAO.
基金supported by the National Natural Science Foundation of China(Nos.21506174,21406039)the Fundamental Research Funds for the Central Universities,Southwest Minzu University(2020NYBPY04)+1 种基金the China Scholarship Council Program(201908510082)Guangdong Natural Science Foundation(2017A030307038)。
文摘Heterogeneous Pd nanocatalysts are efficient catalysts for the Heck reaction but require multi-step,sophisticated procedures and harsh reaction conditions.In this work,a green and facile strategy has been developed to decorate Pd nanoparticles on polydopamine(PDA)-coated multi-walled carbon nanotubes(Pd/CNTs-PDA)via a one-pot method.The obtained nanoparticles were characterized by various techniques including transmission electron microscopy,X-ray diffraction,and X-ray photoelectron spectroscopy,which proved that Pd NPs are well-dispersed on the PDA and between the surfaces of the PDA and CNTs.The resultant Pd/CNTs-PDA catalysts exhibit excellent catalytic reactivity toward the Heck reaction at low temperatures.Moreover,by DFT simulation,we found that during the PDA polymerization process,a large number of unsaturated—N=and C=O species are more active than the groups on the PDA end product to anchor Pd NPs.The results provide evidence that the catalyst synthesized by the onepot method exhibited good activity because sufficient active sites could be created to effectively promote Pd NPs dispersion during the dopamine polymerization process.Additionally,the Pd/CNTs-PDA catalyst was successfully employed in Heck cross-coupling reactions with various functionalized substrates.This method opens a window for the fabrication of high-performance nanocomposite catalysts under mild conditions using simple methods and has several potential applications.
基金the financial supports provided by the Natural Science Fund of Jiangsu Province,China(No.BK20200448)the Postdoctoral Science Foundation of China(No.2020TQ0143)。
文摘Gas foil bearing faces severe and complex thermal-fluid–solid coupling issues when in ultra-high speed and miniaturized impeller machineries.In this study,a Thermo-Elasto-Hydrodynamic(TEHD)analysis of a specific multi-layer gas foil thrust bearing on the continuous loading process within a steady rotational speed is numerically investigated by a three-dimensional thermal-fluid–solid coupling method.Results indicate that the multi-layer foil exhibits nonlinear overall stiffness,with the thrust bottom foil serving as the primary elastic deformation structure,while the thrust top foil maintains a well-defined aerodynamic shape during a loading process,which helps reduce frictional damage and achieve an adequate loading capacity.For low loads,the fluctuation of the gas film is extremely sensitive,and it weakens dramatically as the load increases.The viscous heating and friction torque exhibit a linear relationship with an increasing bearing load after a rapid growth.Depending on the exact stacking sequence and contact position of the multi-layer gas foil,the overlapping configuration allows for efficient transfer of viscous-shearing heat accumulated at the smallest air film through thermal conduction while providing elastic support.Due to the strong inhomogeneity of the viscous heat under varying loads,the temperature distribution on the top foil surface shows pronounced variations,while the difference between the peak and average temperatures of the thrust plate and top foil surfaces widens substantially with an increasing load.
基金supported by the National Key Research and Development Project of China (Nos.2019YFA0904100 and 2017YFA0505400)the National Natural Science Foundation of China (Nos.22077117 and 31971152)the USTC Research Funds of the Double First-Class Initiative。
文摘Current resolved structures of GPCRs and G protein complexes provided important insights into G protein activation. However, the binding or dissociation of GPCRs with G protein is instantaneous and highly dynamic in the intracellular environment. The conformational dynamic of G protein still needs to be addressed. In this study, we applied ^(19)F solution NMR spectroscopy to monitor the conformational changes of G protein upon interact with detergent mimicking membrane and receptor. Our results show that there are two states equilibria in the G_(α)in apo states. The interaction of G_(α)with detergents will accelerate this conformational transformation and induce a state that tends to bind to GPCRs. Finally, the G_(α)proteins presented a fully activation state when they coupled to GPCRs.
基金This work was financially supported by the National Natural Science Foundation of China(grant nos.21775116,21922411,and 21934005)Dalian Institute of Chemical Physics(DICP)Innovation Funding(grant nos.RC201801 and I202008)the LiaoNing Revitalization Talents Program(grant no.XLYC1802109).
文摘Tyrosine Phosphorylation(pTyr)is a critical and ubiquitous regulation mechanism in biology that plays a central role in controlling intracellular signaling networks.Precise recognition and specific detection of pTyr peptides have been of great importance for both discoveries of disease biomarkers and screening of therapeutic drugs,especially cancers.Here we report a label-free,versatile,realtime,and high-throughput detection strategy for phosphopeptide(PP)based on reversible configuration freeze of a unique hemicyanine-labeled 2-(2′-hydroxyphenyl)-4-methyloxazole(H-HPMO).By taking advantage of the“OFF–ON”transition of fluorescence,H-HPMO–Cu^(2+)complex displays a highly sensitive and selective response to PPs with modified sites on serine,threonine,and tyrosine.Specific recognition of Tyr PPs is achieved by performing a simple logic gate operation and introducing Ca^(2+)interference as an input.This PP detection approach is universal for various peptide sequences and displays high potential in large-scale kinase inhibitor screening,which will promote the development of targeted anticancer drugs.
基金supported by the Open Project of the Key Laboratory of Genetic Resources Protection and Disease Prevention and Control of the Ministry of Education of China(No.LPHGRDC2020-002)the Major Marshal List Project of Harbin Medical University(No.HMUMIF-21007)+1 种基金the National Natural Science Foundation of China(No.22305051)the member of Youth Innovation Promotion Association Foundation of CAS,China(No.2023310).
文摘Facing the growing global challenge posed by cancer,the quest for more accurate and potent cancer diagnostic and therapeutic strategies continues to require a multidisciplinary integration approach.This review firstly summarizes various types of nanoparticles in cancer research.Subsequently,it offers a comprehensive overview of signalenhancing techniques for visualizing in situ tumors,along with multimodal diagnostic methods for detecting metastases.As for tumor therapy,cutting-edge drug delivery methods that can cross biological barriers and the pinpoint targeting of tumor lesions for precise medical intervention are introduced.Within the domain of therapeutic diagnostics,we elucidate the theoretical underpinnings and structural paradigms that underlie a spectrum of advanced diagnostic and therapeutic modalities.Additionally,we present a compendium of publications delineating the clinical applications of each nano-based theragnostic integration platform.Finally,this comprehensive review discusses the safety concerns pertaining to the clinical application of nanoparticles and proposes some strategic recommendations to enhance the precision and safety of theragnostic-guided,nanotechnology-based clinical practices.A deeper understanding of nanomaterials,together with intimate interdisciplinary collaborations,nano-wave will most probably guide human beings to win the battle against cancers.