Copper ions(Cu^(2+))are usually added to activate the sulfidized surface of zinc oxide minerals to enhance xanthate attachment using sulfidization xanthate flotation technology.The adsorption of Cu^(2+)and xanthate on...Copper ions(Cu^(2+))are usually added to activate the sulfidized surface of zinc oxide minerals to enhance xanthate attachment using sulfidization xanthate flotation technology.The adsorption of Cu^(2+)and xanthate on the sulfidized surface was investigated in various systems,and its effect on the surface hydrophobicity and flotation performance was revealed by multiple analytical methods and experiments.X-ray photoelectron spectroscopy(XPS)and time-of-flight secondary ion mass spectrometry(To F-SIMS)characterization demonstrated that the adsorption of Cu^(2+)on sulfidized smithsonite surfaces increased the active Cu—S content,regardless of treatment in any activation system.The sulfidized surface pretreated with NH_(4)^(+)-Cu^(2+)created favorable conditions for the adsorption of more Cu^(2+),significantly enhancing the smithsonite reactivity.Zeta potential determination,ultraviolet(UV)-visible spectroscopy,Fourier transform-infrared(FT-IR)measurements,and contact angle detection showed that xanthate was chemically adsorbed on the sulfidized surface,and its adsorption capacity in various systems was illustrated from qualitative and quantitative aspects.In comparison to the Na2S–Cu^(2+)and Cu^(2+)–Na2S–Cu^(2+)systems,xanthate exhibited a higher adsorption capacity on sulfidized smithsonite surfaces in NH_(4)^(+)-Cu^(2+)–Na2S–Cu^(2+)system.Hence,activation with Cu^(2+)–NH4+synergistic species prior to sulfidization significantly enhanced the mineral surface hydrophobicity,thereby increasing its flotation recovery.展开更多
Copper oxide minerals are important copper resources,which include malachite,azurite,chrysocolla,cuprite,etc.Flotation is the most widely used method for the enrichment of copper oxide minerals in the mineral processi...Copper oxide minerals are important copper resources,which include malachite,azurite,chrysocolla,cuprite,etc.Flotation is the most widely used method for the enrichment of copper oxide minerals in the mineral processing industry.In this paper,the surface properties of copper oxide minerals and their effects on the mineral flotation behavior are systematically summarized.The flotation methods of copper oxide minerals and the interaction mechanism with reagents are reviewed in detail.Flotation methods include direct flotation(using chelating reagents or a fatty acid as collector),sulfidization flotation(using xanthate as collector),and activation flotation(using chelating reagents,ammonium/amine salts,metal ions,and oxidant for activation).An effective way to realize efficient flotation of copper oxide minerals is to increase active sites on the surface of copper oxide minerals to enhance the interaction of collector with the mineral surface.Besides,various perspectives for further investigation on the efficient recovery of copper oxide minerals are proposed.展开更多
Objective:This study aimed to explore the understanding of healthcare providers working in the internal medicine department in Shanghai regarding a good death.Methods:The data of the study was collected using face-to-...Objective:This study aimed to explore the understanding of healthcare providers working in the internal medicine department in Shanghai regarding a good death.Methods:The data of the study was collected using face-to-face semi-structured interviews.Through purposive sampling,16 physicians and 13 nurses who had experiences of caring for adult patients with life-threatening illnesses at the end-of-life stage in Shanghai were interviewed.The interviews were analyzed using qualitative content analysis.Results:Six characteristics of a good death emerged:no suffering,companionship and care,no worries or concerns,dying with dignity,involvement and acceptance,and less impact on the family.Eighteen categories were identified:dying without experiencing suffering;being relieved of symptoms and suffering;being relieved of psychological suffering;avoiding the use of futile treatment and resuscita-tion;being cared for and accompanied by family;receiving good health care;having a meaningful life without regrets;making good arrangements for family issues;having a chance to say goodbye;having a quality life before death;dying in a decent environment;the personal will to be respected;maintaining the integrity of the body;death of the patient being accepted by the family and healthcare providers;the death occurred despite the best efforts to care for the patient;limited financial and care burden;shortly affected quality of life of the patient;and improved family cohesion.Conclusion:Family members’early involvement in caring for patients at the end-of-life stage helps achieve a good death.For patients with a terminal illness,avoiding unnecessary medical treatment and resuscitation could be the first step in achieving better patient death and promoting the development of advanced care planning in the mainland of China.展开更多
This paper presents a theoretical model for the size-dependent band structure of magneto-elastic phononic crystal(PC)nanoplates according to the Kirchhoff plate theory and Gurtin-Murdoch theory,in which the surface ef...This paper presents a theoretical model for the size-dependent band structure of magneto-elastic phononic crystal(PC)nanoplates according to the Kirchhoff plate theory and Gurtin-Murdoch theory,in which the surface effect and magneto-elastic coupling are considered.By introducing the nonlinear coupling constitutive relation of magnetostrictive materials,Terfenol-D/epoxy PC nanoplates are carried out as an example to investigate the dependence of the band structure on the surface effect,magnetic field,pre-stress,and geometric parameters.The results show that the surface effect has promotive influence on dispersion curves of the band structure,and the band gaps can be improved gradually with the increase in the material intrinsic length.Meanwhile,the band gaps exhibit obvious nonlinear coupling characteristics owing to the competition between the magnetic field and the pre-stress.By considering the surface effect and magneto-elastic coupling,the open and closed points of band gaps are found when the lattice constant to thickness ratio increases.The study may provide a method for flexible tunability of elastic wave propagation in magneto-elastic PC nanoplates and functional design of highperformance nanoplate-based devices.展开更多
Plasma technology has some shortcomings, such as higher energy consumption and byproducts produced in the reaction process. However non-thermal plasma associated with catalyst can resolve these problems. So this kind ...Plasma technology has some shortcomings, such as higher energy consumption and byproducts produced in the reaction process. However non-thermal plasma associated with catalyst can resolve these problems. So this kind of technology was paid more and more attention to treat waste gas. In this paper, we make use of this technology to decompose toluene under different electric field and packed materials. At the same time, the mechanism of toluene decomposition using plasma and catalyst is discussed. The experimental results show toluene decomposition increases with electric field strength increasing and flow velocity and initial concentration decreasing. There are four conditions in plasma: without packed materials (1);with packed materials (2);with BaTiO3 in the surfaces of packed materials (3);and with nanometer Ba0.8Sr0.2Zr0.1Ti0.9O3 (4). Toluene decomposition represents a obvious trend, that is, η(4) > η(3) > η(2) > η(1). The best decomposition efficiency of toluene arrives at 95%.展开更多
Since the 1 960 s,many successful space missions have highlighted the advantages and necessity of humans in the exploration of space,but scientists have long worried about the adverse effects of spaceflight on Astrona...Since the 1 960 s,many successful space missions have highlighted the advantages and necessity of humans in the exploration of space,but scientists have long worried about the adverse effects of spaceflight on Astronaut.Space flight and models that create conditions similar to those that occur during space flight have been shown to deleteriously affect a variety of immunological responses.The mechanisms and biomedical consequences of these changes remain to be established.Conducting experiments in an environment of true microgravity requires a roundtrip ticket into space,a feat that is both expensive and challenging.Simulated microgravity(SMG)models allow scientists to gather preliminary data without the cost and logistical challenges of spaceflight.The objective of the present study was to evaluate the effects of SMG on immunity function of macrophages that exposed to RPM and RCCS separately.While many studies have demonstrated that alterations occur in the immune system as a result of space travel,the level at which these mechanisms exert their effect,at the level of the mature immune cell or earlier at the progenitor or stem cell stage is not known.In particular,macrophages,as one of the most important immune cells and play a key role in both specific and non-specific immunity,did not have received much attention.Therefore,in our study,we mainly study the influence of microgravity on the immune function of macrophages.In this study,we evaluated the immune dysfunction of macrophages under SMG.Firstly,we found that the morphology and structure of the macrophages were changed,specifically,we observed that there were more protrusions on cell surface and the cells were shrinking significantly after exposure to SMG.Secondly,we demonstrated that under simulated microgravity(SMG)conditions,the phagocytic and proliferative functions of macrophages were significantly reduced.Thirdly,several processes,including surface receptor expression,cytoskeleton,and cytokines secreted were investigated in macrophages under SMG.Phagocytosis is one of the important means for macrophages to exert immune function,and cell surface phagocytosis-related receptors play an important role.Here,we selected four common receptors(TLR2,FcyR1,CD11b and CD 18)to detect.The results indicate that SMG(RPM and RCCS)have a great influence on the expression of surface phagocytosis-related receptors,which may be one of the main reasons for the decline of immune function ofmacrophages.Macrophages exert immune function through phagocytosis,and the cytoskeleton plays an important role in the process of phagocytosis.The results indicate that SMG(RPM and RCCS)have a great influence on the expression of cytoskeleton-related proteins,which provides me with a new idea that SMG may regulate immunity of macrophage by affecting the cytoskeleton.Immune-related cytokines play an important role in macrophage immune process.Here,we selected four common immunocytokine(TNF-α,IL-1β,IL-6 and IL-10)to detect.The change of these four immunocytokine further demonstrate that SMG significantly decline the immunity of macrophage,we must pay enough attention to the impact of SMG on macrophage.The above factors such as the changes of morphology and structure of the macrophages and the decreased expression of Arp2/3 complex related proteins,cytokine secretion,and cell surface receptors may be responsible for the immune dysfunction of macrophages under SMG.展开更多
Under the analytical framework of sustainable livelihoods,we establish the evaluation indicator system for farmers' livelihood capital,to evaluate the current livelihood capital and livelihood diversification for ...Under the analytical framework of sustainable livelihoods,we establish the evaluation indicator system for farmers' livelihood capital,to evaluate the current livelihood capital and livelihood diversification for different farmers in the Dai nationality region of Xinping County in the Yuanjiang dry-hot river valley area,and discuss the relationship between livelihood capital and livelihood diversification. Studies have shown that the mode dominated by agriculture,supplemented by non-agricultural activities,combined with breeding,is the commonly used livelihood strategy for farmers in this region. As farmers change from pure agriculture to non-agriculture,their total livelihood capital and nonagricultural livelihood diversification index will increase,while agricultural livelihood diversification index will decrease. In the meantime,their livelihood activities gradually shift from agricultural to non-agricultural ones,which is mainly reflected in the combination of both agricultural and non-agricultural activities. Regression analysis on livelihood capital and livelihood diversification shows that natural and physical capital is the basis of realizing agricultural livelihood diversification. Farmers with rich natural and physical capital will prefer agricultural livelihood strategies. While financial and human capital is the driving force for farmers' transition from pure agriculture to non-agriculture.展开更多
Inflammatory bowel disease(IBD)is a formidable disease due to its complex pathogenesis.Macrophages,as a major immune cell population in IBD,are crucial for gut homeostasis.However,it is still unveiled how macrophages ...Inflammatory bowel disease(IBD)is a formidable disease due to its complex pathogenesis.Macrophages,as a major immune cell population in IBD,are crucial for gut homeostasis.However,it is still unveiled how macrophages modulate IBD.Here,we found that LIM domain only 7(LMO7)was downregulated in pro-inflammatory macrophages,and that LMO7 directly degraded 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3(PFKFB3)through K48-mediated ubiquitination in macrophages.As an enzyme that regulates glycolysis,PFKFB3 degradation led to the glycolytic process inhibition in macrophages,which in turn inhibited macrophage activation and ultimately attenuated murine colitis.Moreover,we demonstrated that PFKFB3 was required for histone demethylase Jumonji domaincontaining protein 3(JMJD3)expression,thereby inhibiting the protein level of trimethylation of histone H3 on lysine 27(H3K27me3).Overall,our results indicated the LMO7/PFKFB3/JMJD3 axis is essential for modulating macrophage function and IBD pathogenesis.Targeting LMO7 or macrophage metabolism could potentially be an effective strategy for treating inflammatory diseases.展开更多
The mono layer WSe2 is in teresting and important for future application in nanoelectronics,spintronics and valleytronics devices,because it has the largest spin splitting and Ion gest valley coherence time among all ...The mono layer WSe2 is in teresting and important for future application in nanoelectronics,spintronics and valleytronics devices,because it has the largest spin splitting and Ion gest valley coherence time among all the known monolayer transition-metal dichalcogenides(TMDs).Toobtain the large-area monolayer TMDs'crystal is the first step to manu facture scalable and high-performance electronic devices.In this letter,we have successfully fabricated millimeter-sized mono layer WSe2 single crystals with very high quality,based on our improved mecha nicalexfoliation method.With such superior samples,using standard high resolution angle-resolved photoemission spectroscopy,we didcomprehe nsive electronic band structure measurements on our mono layer WSe2.The overall band features point it to be a 1.2 eV direct bandgap semico nductor.Its spin splitting of the valence band at K point is found as 460 meV,which is 30 meV less than the corresponding band splitting in its bulk counterpart.The effective hole masses of valence bands are determined as 2.344 me atГ,and 0.529 me as well as 0.532 meat K for the upper and lower branch of splitting ban ds,respectively.And screening effect from substrate is shown to substa ntially impact onthe electronic properties.Our results provide importa nt insights into band structure engineering in mono layer TMDs.Our mono layer WSe2 crystals may constitute a valuable device platform.展开更多
Proximity labeling catalyzed by promiscuous enzymes,such as APEX2,has emerged as a powerful approach to characterize multiprotein complexes and protein-protein interactions.However,current methods depend on the expres...Proximity labeling catalyzed by promiscuous enzymes,such as APEX2,has emerged as a powerful approach to characterize multiprotein complexes and protein-protein interactions.However,current methods depend on the expression of exogenous fusion proteins and cannot be applied to identify proteins surrounding post-translationally modified proteins.To address this limitation,we developed a new method to label proximal proteins of interest by antibody-mediated protein A-ascorbate peroxidase 2(pA-APEX2) labeling(AMAPEX).In this method,a modified protein is bound in situ by a specific antibody,which then tethers a pA-APEX2 fusion protein.Activation of APEX2 labels the nearby proteins with biotin;the biotinylated proteins are then purified using streptavidin beads and identified by mass spectrometry.We demonstrated the utility of this approach by profiling the proximal proteins of histone modifications including H3 K27 me3,H3 K9 me3,H3 K4 me3,H4 K5 ac,and H4 K12 ac,as well as verifying the co-localization of these identified proteins with bait proteins by published ChIP-seq analysis and nucleosome immunoprecipitation.Overall,AMAPEX is an efficient method to identify proteins that are proximal to modified histones.展开更多
Emissions derived from the consumption of organic solvents have been proven to be the primary industrial source of volatile organic compounds(VOCs).In conjunction with epidemiologic studies, water-based paints(WBPs) a...Emissions derived from the consumption of organic solvents have been proven to be the primary industrial source of volatile organic compounds(VOCs).In conjunction with epidemiologic studies, water-based paints(WBPs) and solvent-based paints(SBPs) were selected as representatives of newly developed solvents and traditional solvents, respectively,to simulate the effects of consuming solvents emitted during industrial production.And non-carcinogenic and carcinogenic risks to residents near emission sources were studied in detail.The results showed that the spatial distribution of health risks varied with meteorological conditions and type of emission source, and the prevailing wind direction strongly affected the distribution range and shape of the influenced area.The areas of influence maximized on heavy-polluting days for both WBP and SBP emission sources with the total span reaching 804 m and 16 km, respectively;meanwhile, the areas of influence for carcinogenic risk resulting from WBP emission sources were 1.2 and 2.3 times greater than those measured on fine and rainy days, respectively, and 1.8 and 2.9 times greater for SBP emission sources.Compared with WBPs, the total spans of negatively influenced regions resulting from SBP emission sources were 10.4, 12.5 and 19.9 times greater on fine, rainy and heavypolluting days, respectively.Therefore, carcinogenic risk was the dominant health threat for populations residing close to solvent-consuming industrial emission sources.The findings suggest that newly developed solvents are capable of significantly reducing consequent health threats, nevertheless, they could still pose occasional threats to nearby residents under specific meteorological conditions.展开更多
The ongoing discoveries and studies of novel topological quantum materials have become an emergent and important field of condensed matter physics. Recently, Hfres ignited renewed interest as a candidate of a novel to...The ongoing discoveries and studies of novel topological quantum materials have become an emergent and important field of condensed matter physics. Recently, Hfres ignited renewed interest as a candidate of a novel topological material. The single-layer Hffes is predicted to be a tWOldimensional large band gap topological insulator and can be stacked into a bulk that may host a temperatureldriven topological phase transition. Historically, Hfres attracted considerable interest for its anomalous transport properties characterized by a peculiar resistivity peak accompanied by a sign reversal carrier type. The origin of the transport anomaly remains under a hot debate. Here we report the first high-resolution laserlbased anglelresolved photoemission measurements on the temperature-dependent electronic structure in Hffes. Our results indicated that a temperature-induced Lifshitz transition occurs in Hffes, which provides a natural understanding on the origin of the transport anomaly in Hffe~. In addition, our observa- tions suggest that Hffes is a weak topological insulator that is located at the phase boundary between weak and strong topological insulators at very low temperature.展开更多
基金supported by National Natural Science Foundation of China(No.52264026)Yunnan Fundamental Research Projects(Nos.202301AW070018,and 202101BE070001-009)。
文摘Copper ions(Cu^(2+))are usually added to activate the sulfidized surface of zinc oxide minerals to enhance xanthate attachment using sulfidization xanthate flotation technology.The adsorption of Cu^(2+)and xanthate on the sulfidized surface was investigated in various systems,and its effect on the surface hydrophobicity and flotation performance was revealed by multiple analytical methods and experiments.X-ray photoelectron spectroscopy(XPS)and time-of-flight secondary ion mass spectrometry(To F-SIMS)characterization demonstrated that the adsorption of Cu^(2+)on sulfidized smithsonite surfaces increased the active Cu—S content,regardless of treatment in any activation system.The sulfidized surface pretreated with NH_(4)^(+)-Cu^(2+)created favorable conditions for the adsorption of more Cu^(2+),significantly enhancing the smithsonite reactivity.Zeta potential determination,ultraviolet(UV)-visible spectroscopy,Fourier transform-infrared(FT-IR)measurements,and contact angle detection showed that xanthate was chemically adsorbed on the sulfidized surface,and its adsorption capacity in various systems was illustrated from qualitative and quantitative aspects.In comparison to the Na2S–Cu^(2+)and Cu^(2+)–Na2S–Cu^(2+)systems,xanthate exhibited a higher adsorption capacity on sulfidized smithsonite surfaces in NH_(4)^(+)-Cu^(2+)–Na2S–Cu^(2+)system.Hence,activation with Cu^(2+)–NH4+synergistic species prior to sulfidization significantly enhanced the mineral surface hydrophobicity,thereby increasing its flotation recovery.
基金supported by Yunnan Fundamental Research Projects(No.202101BE070001-009)China Postdoctoral Science Foundation(No.2018T111000)Applied Basic Research Foundation of Yunnan Province(No.2018FD035).
文摘Copper oxide minerals are important copper resources,which include malachite,azurite,chrysocolla,cuprite,etc.Flotation is the most widely used method for the enrichment of copper oxide minerals in the mineral processing industry.In this paper,the surface properties of copper oxide minerals and their effects on the mineral flotation behavior are systematically summarized.The flotation methods of copper oxide minerals and the interaction mechanism with reagents are reviewed in detail.Flotation methods include direct flotation(using chelating reagents or a fatty acid as collector),sulfidization flotation(using xanthate as collector),and activation flotation(using chelating reagents,ammonium/amine salts,metal ions,and oxidant for activation).An effective way to realize efficient flotation of copper oxide minerals is to increase active sites on the surface of copper oxide minerals to enhance the interaction of collector with the mineral surface.Besides,various perspectives for further investigation on the efficient recovery of copper oxide minerals are proposed.
文摘Objective:This study aimed to explore the understanding of healthcare providers working in the internal medicine department in Shanghai regarding a good death.Methods:The data of the study was collected using face-to-face semi-structured interviews.Through purposive sampling,16 physicians and 13 nurses who had experiences of caring for adult patients with life-threatening illnesses at the end-of-life stage in Shanghai were interviewed.The interviews were analyzed using qualitative content analysis.Results:Six characteristics of a good death emerged:no suffering,companionship and care,no worries or concerns,dying with dignity,involvement and acceptance,and less impact on the family.Eighteen categories were identified:dying without experiencing suffering;being relieved of symptoms and suffering;being relieved of psychological suffering;avoiding the use of futile treatment and resuscita-tion;being cared for and accompanied by family;receiving good health care;having a meaningful life without regrets;making good arrangements for family issues;having a chance to say goodbye;having a quality life before death;dying in a decent environment;the personal will to be respected;maintaining the integrity of the body;death of the patient being accepted by the family and healthcare providers;the death occurred despite the best efforts to care for the patient;limited financial and care burden;shortly affected quality of life of the patient;and improved family cohesion.Conclusion:Family members’early involvement in caring for patients at the end-of-life stage helps achieve a good death.For patients with a terminal illness,avoiding unnecessary medical treatment and resuscitation could be the first step in achieving better patient death and promoting the development of advanced care planning in the mainland of China.
基金Project supported by the National Natural Science Foundation of China(No.12002179)the Ningxia Key Research and Development Program(Special Talents)(No.2020BEB04001)the Natural Science Foundation of Ningxia of China(No.2021AAC03037)。
文摘This paper presents a theoretical model for the size-dependent band structure of magneto-elastic phononic crystal(PC)nanoplates according to the Kirchhoff plate theory and Gurtin-Murdoch theory,in which the surface effect and magneto-elastic coupling are considered.By introducing the nonlinear coupling constitutive relation of magnetostrictive materials,Terfenol-D/epoxy PC nanoplates are carried out as an example to investigate the dependence of the band structure on the surface effect,magnetic field,pre-stress,and geometric parameters.The results show that the surface effect has promotive influence on dispersion curves of the band structure,and the band gaps can be improved gradually with the increase in the material intrinsic length.Meanwhile,the band gaps exhibit obvious nonlinear coupling characteristics owing to the competition between the magnetic field and the pre-stress.By considering the surface effect and magneto-elastic coupling,the open and closed points of band gaps are found when the lattice constant to thickness ratio increases.The study may provide a method for flexible tunability of elastic wave propagation in magneto-elastic PC nanoplates and functional design of highperformance nanoplate-based devices.
文摘Plasma technology has some shortcomings, such as higher energy consumption and byproducts produced in the reaction process. However non-thermal plasma associated with catalyst can resolve these problems. So this kind of technology was paid more and more attention to treat waste gas. In this paper, we make use of this technology to decompose toluene under different electric field and packed materials. At the same time, the mechanism of toluene decomposition using plasma and catalyst is discussed. The experimental results show toluene decomposition increases with electric field strength increasing and flow velocity and initial concentration decreasing. There are four conditions in plasma: without packed materials (1);with packed materials (2);with BaTiO3 in the surfaces of packed materials (3);and with nanometer Ba0.8Sr0.2Zr0.1Ti0.9O3 (4). Toluene decomposition represents a obvious trend, that is, η(4) > η(3) > η(2) > η(1). The best decomposition efficiency of toluene arrives at 95%.
文摘Since the 1 960 s,many successful space missions have highlighted the advantages and necessity of humans in the exploration of space,but scientists have long worried about the adverse effects of spaceflight on Astronaut.Space flight and models that create conditions similar to those that occur during space flight have been shown to deleteriously affect a variety of immunological responses.The mechanisms and biomedical consequences of these changes remain to be established.Conducting experiments in an environment of true microgravity requires a roundtrip ticket into space,a feat that is both expensive and challenging.Simulated microgravity(SMG)models allow scientists to gather preliminary data without the cost and logistical challenges of spaceflight.The objective of the present study was to evaluate the effects of SMG on immunity function of macrophages that exposed to RPM and RCCS separately.While many studies have demonstrated that alterations occur in the immune system as a result of space travel,the level at which these mechanisms exert their effect,at the level of the mature immune cell or earlier at the progenitor or stem cell stage is not known.In particular,macrophages,as one of the most important immune cells and play a key role in both specific and non-specific immunity,did not have received much attention.Therefore,in our study,we mainly study the influence of microgravity on the immune function of macrophages.In this study,we evaluated the immune dysfunction of macrophages under SMG.Firstly,we found that the morphology and structure of the macrophages were changed,specifically,we observed that there were more protrusions on cell surface and the cells were shrinking significantly after exposure to SMG.Secondly,we demonstrated that under simulated microgravity(SMG)conditions,the phagocytic and proliferative functions of macrophages were significantly reduced.Thirdly,several processes,including surface receptor expression,cytoskeleton,and cytokines secreted were investigated in macrophages under SMG.Phagocytosis is one of the important means for macrophages to exert immune function,and cell surface phagocytosis-related receptors play an important role.Here,we selected four common receptors(TLR2,FcyR1,CD11b and CD 18)to detect.The results indicate that SMG(RPM and RCCS)have a great influence on the expression of surface phagocytosis-related receptors,which may be one of the main reasons for the decline of immune function ofmacrophages.Macrophages exert immune function through phagocytosis,and the cytoskeleton plays an important role in the process of phagocytosis.The results indicate that SMG(RPM and RCCS)have a great influence on the expression of cytoskeleton-related proteins,which provides me with a new idea that SMG may regulate immunity of macrophage by affecting the cytoskeleton.Immune-related cytokines play an important role in macrophage immune process.Here,we selected four common immunocytokine(TNF-α,IL-1β,IL-6 and IL-10)to detect.The change of these four immunocytokine further demonstrate that SMG significantly decline the immunity of macrophage,we must pay enough attention to the impact of SMG on macrophage.The above factors such as the changes of morphology and structure of the macrophages and the decreased expression of Arp2/3 complex related proteins,cytokine secretion,and cell surface receptors may be responsible for the immune dysfunction of macrophages under SMG.
基金Supported by National Social Science Foundation(13BMZ059)Young Teacher Training Program in Yunnan University(XT412003)
文摘Under the analytical framework of sustainable livelihoods,we establish the evaluation indicator system for farmers' livelihood capital,to evaluate the current livelihood capital and livelihood diversification for different farmers in the Dai nationality region of Xinping County in the Yuanjiang dry-hot river valley area,and discuss the relationship between livelihood capital and livelihood diversification. Studies have shown that the mode dominated by agriculture,supplemented by non-agricultural activities,combined with breeding,is the commonly used livelihood strategy for farmers in this region. As farmers change from pure agriculture to non-agriculture,their total livelihood capital and nonagricultural livelihood diversification index will increase,while agricultural livelihood diversification index will decrease. In the meantime,their livelihood activities gradually shift from agricultural to non-agricultural ones,which is mainly reflected in the combination of both agricultural and non-agricultural activities. Regression analysis on livelihood capital and livelihood diversification shows that natural and physical capital is the basis of realizing agricultural livelihood diversification. Farmers with rich natural and physical capital will prefer agricultural livelihood strategies. While financial and human capital is the driving force for farmers' transition from pure agriculture to non-agriculture.
基金supported by grants from the National Natural Science Foundation of China(82373875,82173821,81973329,82273934,82073858,82104186).
文摘Inflammatory bowel disease(IBD)is a formidable disease due to its complex pathogenesis.Macrophages,as a major immune cell population in IBD,are crucial for gut homeostasis.However,it is still unveiled how macrophages modulate IBD.Here,we found that LIM domain only 7(LMO7)was downregulated in pro-inflammatory macrophages,and that LMO7 directly degraded 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3(PFKFB3)through K48-mediated ubiquitination in macrophages.As an enzyme that regulates glycolysis,PFKFB3 degradation led to the glycolytic process inhibition in macrophages,which in turn inhibited macrophage activation and ultimately attenuated murine colitis.Moreover,we demonstrated that PFKFB3 was required for histone demethylase Jumonji domaincontaining protein 3(JMJD3)expression,thereby inhibiting the protein level of trimethylation of histone H3 on lysine 27(H3K27me3).Overall,our results indicated the LMO7/PFKFB3/JMJD3 axis is essential for modulating macrophage function and IBD pathogenesis.Targeting LMO7 or macrophage metabolism could potentially be an effective strategy for treating inflammatory diseases.
基金This work is supported by the National Science Foundation of China(Nos.11574367 and 11874405)the National Key Research and Development Program of China(Nos.2016YFA0300600,2018YFA0704200,and 2019YFA0308000)the Youth Innovation Promotion Association of CAS(Nos.2017013 and 2019007).
文摘The mono layer WSe2 is in teresting and important for future application in nanoelectronics,spintronics and valleytronics devices,because it has the largest spin splitting and Ion gest valley coherence time among all the known monolayer transition-metal dichalcogenides(TMDs).Toobtain the large-area monolayer TMDs'crystal is the first step to manu facture scalable and high-performance electronic devices.In this letter,we have successfully fabricated millimeter-sized mono layer WSe2 single crystals with very high quality,based on our improved mecha nicalexfoliation method.With such superior samples,using standard high resolution angle-resolved photoemission spectroscopy,we didcomprehe nsive electronic band structure measurements on our mono layer WSe2.The overall band features point it to be a 1.2 eV direct bandgap semico nductor.Its spin splitting of the valence band at K point is found as 460 meV,which is 30 meV less than the corresponding band splitting in its bulk counterpart.The effective hole masses of valence bands are determined as 2.344 me atГ,and 0.529 me as well as 0.532 meat K for the upper and lower branch of splitting ban ds,respectively.And screening effect from substrate is shown to substa ntially impact onthe electronic properties.Our results provide importa nt insights into band structure engineering in mono layer TMDs.Our mono layer WSe2 crystals may constitute a valuable device platform.
基金supported by the National Key R&D Program of China(Grant No.2019YFA0903803)the Major Program of National Natural Science Foundation of China(Grant No.32090031)+10 种基金the General Program of National Natural Science Foundation of China(Grant Nos.31971354 and 32070610)the National Natural Science Foundation of China for Young Scholars(Grant No.32000580)the Guangdong Province Fund for Distinguished Young Scholars,China(Grant No.2021B1515020109)the Key Project from Natural Science Foundation of Guangdong Province,China(Grant No.2020B1515120034)the Guangdong Provincial Key Laboratory of Synthetic Genomics,China(Grant No.2019B030301006)the Shenzhen Key Laboratory of Synthetic Genomics,China(Grant No.ZDSYS201802061806209)the Project from Shenzhen Science and Technology Innovation Committee,China(Grant No.JCYJ20170818164014753)the Mayo Clinic Cancer Center Eagles Cancer Fund awarded to ZWthe Mayo Clinic Cancer Center Hematologic Malignancies Program awarded to ZWthe Mayo Clinic division of Hematology awarded to ZWthe Mayo Clinic Center for Biomedical Discovery awarded to SMO,United States。
文摘Proximity labeling catalyzed by promiscuous enzymes,such as APEX2,has emerged as a powerful approach to characterize multiprotein complexes and protein-protein interactions.However,current methods depend on the expression of exogenous fusion proteins and cannot be applied to identify proteins surrounding post-translationally modified proteins.To address this limitation,we developed a new method to label proximal proteins of interest by antibody-mediated protein A-ascorbate peroxidase 2(pA-APEX2) labeling(AMAPEX).In this method,a modified protein is bound in situ by a specific antibody,which then tethers a pA-APEX2 fusion protein.Activation of APEX2 labels the nearby proteins with biotin;the biotinylated proteins are then purified using streptavidin beads and identified by mass spectrometry.We demonstrated the utility of this approach by profiling the proximal proteins of histone modifications including H3 K27 me3,H3 K9 me3,H3 K4 me3,H4 K5 ac,and H4 K12 ac,as well as verifying the co-localization of these identified proteins with bait proteins by published ChIP-seq analysis and nucleosome immunoprecipitation.Overall,AMAPEX is an efficient method to identify proteins that are proximal to modified histones.
基金supported by the Ministry of Science and Technology of the People’s Republic of China (No.2020YFC1806303)the Beijing Municipal Science & Technology Commission (No.Z171100004417029)。
文摘Emissions derived from the consumption of organic solvents have been proven to be the primary industrial source of volatile organic compounds(VOCs).In conjunction with epidemiologic studies, water-based paints(WBPs) and solvent-based paints(SBPs) were selected as representatives of newly developed solvents and traditional solvents, respectively,to simulate the effects of consuming solvents emitted during industrial production.And non-carcinogenic and carcinogenic risks to residents near emission sources were studied in detail.The results showed that the spatial distribution of health risks varied with meteorological conditions and type of emission source, and the prevailing wind direction strongly affected the distribution range and shape of the influenced area.The areas of influence maximized on heavy-polluting days for both WBP and SBP emission sources with the total span reaching 804 m and 16 km, respectively;meanwhile, the areas of influence for carcinogenic risk resulting from WBP emission sources were 1.2 and 2.3 times greater than those measured on fine and rainy days, respectively, and 1.8 and 2.9 times greater for SBP emission sources.Compared with WBPs, the total spans of negatively influenced regions resulting from SBP emission sources were 10.4, 12.5 and 19.9 times greater on fine, rainy and heavypolluting days, respectively.Therefore, carcinogenic risk was the dominant health threat for populations residing close to solvent-consuming industrial emission sources.The findings suggest that newly developed solvents are capable of significantly reducing consequent health threats, nevertheless, they could still pose occasional threats to nearby residents under specific meteorological conditions.
基金supported by the National Key Research and Development Program of China (2016YFA0300600)the National Natural Science Foundation of China(11574367)+1 种基金the National Basic Research Program of China (2013CB921700,2013CB921904 and 2015CB921300)the Strategic Priority Research Program(B) of the Chinese Academy of Sciences(XDB07020300)
文摘The ongoing discoveries and studies of novel topological quantum materials have become an emergent and important field of condensed matter physics. Recently, Hfres ignited renewed interest as a candidate of a novel topological material. The single-layer Hffes is predicted to be a tWOldimensional large band gap topological insulator and can be stacked into a bulk that may host a temperatureldriven topological phase transition. Historically, Hfres attracted considerable interest for its anomalous transport properties characterized by a peculiar resistivity peak accompanied by a sign reversal carrier type. The origin of the transport anomaly remains under a hot debate. Here we report the first high-resolution laserlbased anglelresolved photoemission measurements on the temperature-dependent electronic structure in Hffes. Our results indicated that a temperature-induced Lifshitz transition occurs in Hffes, which provides a natural understanding on the origin of the transport anomaly in Hffe~. In addition, our observa- tions suggest that Hffes is a weak topological insulator that is located at the phase boundary between weak and strong topological insulators at very low temperature.