Lattice-Boltzmann equation(LBE)–Discrete element method(DEM)coupled simulation of a twodimensional gas–solid cross jet is performed,focusing on the gas-particle two-way coupling effect on heat transfer characteristi...Lattice-Boltzmann equation(LBE)–Discrete element method(DEM)coupled simulation of a twodimensional gas–solid cross jet is performed,focusing on the gas-particle two-way coupling effect on heat transfer characteristics.The Reynolds number is 1000,and particle Stokes numbers are 10,25,and 50 under the same number flow rate of particles.The gas phase temperature field and particle distribution as well as the inter-phase heat transfer characteristics are studied and analyzed.The dominating effects,i.e.the mean temperature difference and mean heat transfer coefficient between the gas–solid phases,for the pre-and post-collision stages of the cross jets are illustrated respectively.The change of dominating roles is related to the dynamical response characteristics of particles.展开更多
基金supported by the National Natural Science Foundation of China (51106180)the China Postdoctoral Science Foundation (2013M540964)
文摘Lattice-Boltzmann equation(LBE)–Discrete element method(DEM)coupled simulation of a twodimensional gas–solid cross jet is performed,focusing on the gas-particle two-way coupling effect on heat transfer characteristics.The Reynolds number is 1000,and particle Stokes numbers are 10,25,and 50 under the same number flow rate of particles.The gas phase temperature field and particle distribution as well as the inter-phase heat transfer characteristics are studied and analyzed.The dominating effects,i.e.the mean temperature difference and mean heat transfer coefficient between the gas–solid phases,for the pre-and post-collision stages of the cross jets are illustrated respectively.The change of dominating roles is related to the dynamical response characteristics of particles.