The inhomogeneous hardness distribution of high pressure torsion (HPT) processed IF steel disks along different directions is investigated. The results indicated that there exists inhomogeneous distribution in HPT pro...The inhomogeneous hardness distribution of high pressure torsion (HPT) processed IF steel disks along different directions is investigated. The results indicated that there exists inhomogeneous distribution in HPT processed IF steel disks, giving lower hardness in the center and higher hardness in the edge regions. However, on the axisymmetrical section testing plane of the disks’ thickness direction, there is a soft zone near the surface of disks. Further results from radius testing plane of different depths from the surface of HPT processed disks show that the inhomogeneity rules of hardness distribution on the radius direction are similar to that on the thickness direction. Compared with the initial state, different stages of HPT (compression and compression + torsion) can both remarkably increase the hardness of IF steel disks. Microstructure investigation results can give a well support to verify the rules of hardness distribution, showing hardly no change of grains in center and sever plastic deformation in edge. The inhomogeneous distribution of stress and strain with the huge friction between anvil and disks in the process of HPT play an important role of hardness and microstructure distribution.展开更多
Hydrological modeling,leveraging mathematical formulations to represent the hydrological cycle,is a pivotal tool in representing the spatiotemporal dynamics and distribution patterns inherent in hydrology.These models...Hydrological modeling,leveraging mathematical formulations to represent the hydrological cycle,is a pivotal tool in representing the spatiotemporal dynamics and distribution patterns inherent in hydrology.These models serve a dual purpose:they validate theoretical robustness and applicability via observational data and project future trends,thereby bridging the understanding and prediction of natural processes.In rapid advancements in computational methodologies and the continuous evolution of observational and experimental techniques,the development of numerical hydrological models based on physicallybased surface-subsurface process coupling have accelerated.Anchored in micro-scale conservation principles and physical equations,these models employ numerical techniques to integrate surface and subsurface hydrodynamics,thus replicating the macro-scale hydrological responses of watersheds.Numerical hydrological models have emerged as a leading and predominant trend in hydrological modeling due to their explicit representation of physical processes,heightened by their spatiotemporal resolution and reliance on interdisciplinary integration.This article focuses on the theoretical foundation of surface-subsurface numerical hydrological models.It includes a comparative and analytical discussion of leading numerical hydrological models,encompassing model architecture,numerical solution strategies,spatial representation,and coupling algorithms.Additionally,this paper contrasts these models with traditional hydrological models,thereby delineating the relative merits,drawbacks,and future directions of numerical hydrological modeling.展开更多
The heterojunction of single-wall carbon nanotubes(SWCNTs)and perovskite quantum dots(QDs)shows excellent photodetection performances due to the combination of the advantages of high carrier mobility of SWCNTs and hig...The heterojunction of single-wall carbon nanotubes(SWCNTs)and perovskite quantum dots(QDs)shows excellent photodetection performances due to the combination of the advantages of high carrier mobility of SWCNTs and high absorption coefficient of perovskite QDs.However,the band structure of a SWCNT is determined by its atomic arrangement structure.How the structure of SWCNTs affects the photoelectric performance of the composite film remains elusive.Here,we systematically explored the diameter effect of SWCNTs with different bandgaps on the photodetection performances of SWCNTs/perovskite QDs heterojunction films by integrating semiconducting SWCNTs(s-SWCNTs)with different diameters with CsPbBr3 QDs.The results show that with an increase in diameter of s-SWCNTs,the heterojunction exhibits increasing responsivity(R),detectivity(D*),and faster response time.The great improvement in the optoelectronic performances of devices should be attributed to the higher carrier mobility of larger-diameter SWCNT films and the increasing built-in electric field at the heterojunction interfaces between larger-diameter SWCNTs and CsPbBr3 QDs,which enhances the separation of the photogenerated excitons and the transport of the resulted carriers in SWCNT films.展开更多
为了开发丙酮酸高产菌株,以大肠杆菌MG1655为出发菌株,通过基因敲除阻断副产物途径构建了产丙酮酸大肠杆菌工程菌KLPP。进一步利用p UT Mini-Tn5载体进行转座子随机突变,构建了含有7 197个单克隆的突变体文库。使用基于丙酮酸的二硝基...为了开发丙酮酸高产菌株,以大肠杆菌MG1655为出发菌株,通过基因敲除阻断副产物途径构建了产丙酮酸大肠杆菌工程菌KLPP。进一步利用p UT Mini-Tn5载体进行转座子随机突变,构建了含有7 197个单克隆的突变体文库。使用基于丙酮酸的二硝基苯肼显色法,建立了96孔板-酶标仪快速筛选方法,经过两轮的筛选,成功筛选到了6个突变体菌株,比KLPP丙酮酸产量提高了38%、31%、19%、28%、44%和14%。利用全基因组重测序确定了其转座子插入的位置,进而确定了可能影响丙酮酸产量的基因位点,为后续菌株改造工作奠定了基础。展开更多
The rolling direction(RD) and the transverse direction(TD) samples were obtained from an as-rolled ZK60 magnesium alloy sheet with strong anisotropy of initial texture and their mechanical properties were tested a...The rolling direction(RD) and the transverse direction(TD) samples were obtained from an as-rolled ZK60 magnesium alloy sheet with strong anisotropy of initial texture and their mechanical properties were tested at various deformation temperatures. Meanwhile, the microstructure and texture of these samples after fracture were investigated. Results revealed that a higher flow stress along the RD than that along the TD at room temperature were ascribed to the strong anisotropy of transitional texture, and this texture effect was remarkably weakened with the increase of deformation temperature. Deformation structure was dominant at 100℃, and was replaced by dynamic recrystallization structure when the deformation temperature increased to 200℃ and 300℃. The texture presented a strong texture(transitional texture in the RD sample and basal texture in the TD sample) at 100℃, but its intensity visibly decreased and texture components became more disperse at 200℃ and 300℃. These microstructure and texture results were employed in conjunction with calculated results to argue that raising deformation temperature could increase the activity of non-basal slip by tailoring the relative critical resolved shear stress of each deformation mode and finally result in low texture effect on mechanical anisotropy.展开更多
文摘The inhomogeneous hardness distribution of high pressure torsion (HPT) processed IF steel disks along different directions is investigated. The results indicated that there exists inhomogeneous distribution in HPT processed IF steel disks, giving lower hardness in the center and higher hardness in the edge regions. However, on the axisymmetrical section testing plane of the disks’ thickness direction, there is a soft zone near the surface of disks. Further results from radius testing plane of different depths from the surface of HPT processed disks show that the inhomogeneity rules of hardness distribution on the radius direction are similar to that on the thickness direction. Compared with the initial state, different stages of HPT (compression and compression + torsion) can both remarkably increase the hardness of IF steel disks. Microstructure investigation results can give a well support to verify the rules of hardness distribution, showing hardly no change of grains in center and sever plastic deformation in edge. The inhomogeneous distribution of stress and strain with the huge friction between anvil and disks in the process of HPT play an important role of hardness and microstructure distribution.
基金supported by the National Natural Science Foundation of China(Grant Nos.41930759,42325502)the West Light Foundation of the Chinese Academy of Sciences(Grant No.xbzg-zdsys-202215)+2 种基金the Chinese Academy Sciences Talents Program,National Cryosphere Desert Data Centerthe Qinghai Key Laboratory of Disaster Prevention(Grant No.QFZ-2021-Z02)2023 First Batch of Science and Technology Plan Projects of Lanzhou City(Grant No.2023-1-49)。
文摘Hydrological modeling,leveraging mathematical formulations to represent the hydrological cycle,is a pivotal tool in representing the spatiotemporal dynamics and distribution patterns inherent in hydrology.These models serve a dual purpose:they validate theoretical robustness and applicability via observational data and project future trends,thereby bridging the understanding and prediction of natural processes.In rapid advancements in computational methodologies and the continuous evolution of observational and experimental techniques,the development of numerical hydrological models based on physicallybased surface-subsurface process coupling have accelerated.Anchored in micro-scale conservation principles and physical equations,these models employ numerical techniques to integrate surface and subsurface hydrodynamics,thus replicating the macro-scale hydrological responses of watersheds.Numerical hydrological models have emerged as a leading and predominant trend in hydrological modeling due to their explicit representation of physical processes,heightened by their spatiotemporal resolution and reliance on interdisciplinary integration.This article focuses on the theoretical foundation of surface-subsurface numerical hydrological models.It includes a comparative and analytical discussion of leading numerical hydrological models,encompassing model architecture,numerical solution strategies,spatial representation,and coupling algorithms.Additionally,this paper contrasts these models with traditional hydrological models,thereby delineating the relative merits,drawbacks,and future directions of numerical hydrological modeling.
基金supported by the National Key Research and Development Program of China(Nos.2020YFA0714700 and 2018YFA0208402)the National Natural Science Foundation of China(Nos.51820105002,51872320,51472264,11634014,and 52172060)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB33030100)the Key Research Program of Frontier Sciences,CAS(No.QYZDBSSW-SYS028)the Youth Innovation Promotion Association of CAS(No.2020005).
文摘The heterojunction of single-wall carbon nanotubes(SWCNTs)and perovskite quantum dots(QDs)shows excellent photodetection performances due to the combination of the advantages of high carrier mobility of SWCNTs and high absorption coefficient of perovskite QDs.However,the band structure of a SWCNT is determined by its atomic arrangement structure.How the structure of SWCNTs affects the photoelectric performance of the composite film remains elusive.Here,we systematically explored the diameter effect of SWCNTs with different bandgaps on the photodetection performances of SWCNTs/perovskite QDs heterojunction films by integrating semiconducting SWCNTs(s-SWCNTs)with different diameters with CsPbBr3 QDs.The results show that with an increase in diameter of s-SWCNTs,the heterojunction exhibits increasing responsivity(R),detectivity(D*),and faster response time.The great improvement in the optoelectronic performances of devices should be attributed to the higher carrier mobility of larger-diameter SWCNT films and the increasing built-in electric field at the heterojunction interfaces between larger-diameter SWCNTs and CsPbBr3 QDs,which enhances the separation of the photogenerated excitons and the transport of the resulted carriers in SWCNT films.
文摘为了开发丙酮酸高产菌株,以大肠杆菌MG1655为出发菌株,通过基因敲除阻断副产物途径构建了产丙酮酸大肠杆菌工程菌KLPP。进一步利用p UT Mini-Tn5载体进行转座子随机突变,构建了含有7 197个单克隆的突变体文库。使用基于丙酮酸的二硝基苯肼显色法,建立了96孔板-酶标仪快速筛选方法,经过两轮的筛选,成功筛选到了6个突变体菌株,比KLPP丙酮酸产量提高了38%、31%、19%、28%、44%和14%。利用全基因组重测序确定了其转座子插入的位置,进而确定了可能影响丙酮酸产量的基因位点,为后续菌株改造工作奠定了基础。
基金supported financially by the National Natural Science Foundation of China (No. 51401064)the Sci-tech Development Project in Shandong Province (No. 2014GGX10211)+1 种基金the Sci-tech Major Project in Shandong Province (No. 2015ZDJQ02002)the Fundamental Research Funds for the Central Universities (No. HIT.NSRIF.2016109)
文摘The rolling direction(RD) and the transverse direction(TD) samples were obtained from an as-rolled ZK60 magnesium alloy sheet with strong anisotropy of initial texture and their mechanical properties were tested at various deformation temperatures. Meanwhile, the microstructure and texture of these samples after fracture were investigated. Results revealed that a higher flow stress along the RD than that along the TD at room temperature were ascribed to the strong anisotropy of transitional texture, and this texture effect was remarkably weakened with the increase of deformation temperature. Deformation structure was dominant at 100℃, and was replaced by dynamic recrystallization structure when the deformation temperature increased to 200℃ and 300℃. The texture presented a strong texture(transitional texture in the RD sample and basal texture in the TD sample) at 100℃, but its intensity visibly decreased and texture components became more disperse at 200℃ and 300℃. These microstructure and texture results were employed in conjunction with calculated results to argue that raising deformation temperature could increase the activity of non-basal slip by tailoring the relative critical resolved shear stress of each deformation mode and finally result in low texture effect on mechanical anisotropy.