A cyber physical system(CPS)is a complex system that integrates sensing,computation,control and networking into physical processes and objects over Internet.It plays a key role in modern industry since it connects phy...A cyber physical system(CPS)is a complex system that integrates sensing,computation,control and networking into physical processes and objects over Internet.It plays a key role in modern industry since it connects physical and cyber worlds.In order to meet ever-changing industrial requirements,its structures and functions are constantly improved.Meanwhile,new security issues have arisen.A ubiquitous problem is the fact that cyber attacks can cause significant damage to industrial systems,and thus has gained increasing attention from researchers and practitioners.This paper presents a survey of state-of-the-art results of cyber attacks on cyber physical systems.First,as typical system models are employed to study these systems,time-driven and event-driven systems are reviewed.Then,recent advances on three types of attacks,i.e.,those on availability,integrity,and confidentiality are discussed.In particular,the detailed studies on availability and integrity attacks are introduced from the perspective of attackers and defenders.Namely,both attack and defense strategies are discussed based on different system models.Some challenges and open issues are indicated to guide future research and inspire the further exploration of this increasingly important area.展开更多
Deadlock resolution strategies based on siphon control are widely investigated.Their computational efficiency largely depends on siphon computation.Mixed-integer programming(MIP)can be utilized for the computation of ...Deadlock resolution strategies based on siphon control are widely investigated.Their computational efficiency largely depends on siphon computation.Mixed-integer programming(MIP)can be utilized for the computation of an emptiable siphon in a Petri net(PN).Based on it,deadlock resolution strategies can be designed without requiring complete siphon enumeration that has exponential complexity.Due to this reason,various MIP methods are proposed for various subclasses of PNs.This work proposes an innovative MIP method to compute an emptiable minimal siphon(EMS)for a subclass of PNs named S^(4)PR.In particular,many particular structural characteristics of EMS in S4 PR are formalized as constraints,which greatly reduces the solution space.Experimental results show that the proposed MIP method has higher computational efficiency.Furthermore,the proposed method allows one to determine the liveness of an ordinary S^(4)PR.展开更多
基金supported by Institutional Fund Projects(IFPNC-001-135-2020)technical and financial support from the Ministry of Education and King Abdulaziz University,DSR,Jeddah,Saudi Arabia。
文摘A cyber physical system(CPS)is a complex system that integrates sensing,computation,control and networking into physical processes and objects over Internet.It plays a key role in modern industry since it connects physical and cyber worlds.In order to meet ever-changing industrial requirements,its structures and functions are constantly improved.Meanwhile,new security issues have arisen.A ubiquitous problem is the fact that cyber attacks can cause significant damage to industrial systems,and thus has gained increasing attention from researchers and practitioners.This paper presents a survey of state-of-the-art results of cyber attacks on cyber physical systems.First,as typical system models are employed to study these systems,time-driven and event-driven systems are reviewed.Then,recent advances on three types of attacks,i.e.,those on availability,integrity,and confidentiality are discussed.In particular,the detailed studies on availability and integrity attacks are introduced from the perspective of attackers and defenders.Namely,both attack and defense strategies are discussed based on different system models.Some challenges and open issues are indicated to guide future research and inspire the further exploration of this increasingly important area.
基金supported in part by Zhejiang Provincial Key Research and Development Program(2018C01084)Zhejiang Natural Science Foundation(LQ20F020009)Zhejiang Gongshang University,Zhejiang Provincial Key Laboratory of New Network Standards and Technologies(2013E10012)。
文摘Deadlock resolution strategies based on siphon control are widely investigated.Their computational efficiency largely depends on siphon computation.Mixed-integer programming(MIP)can be utilized for the computation of an emptiable siphon in a Petri net(PN).Based on it,deadlock resolution strategies can be designed without requiring complete siphon enumeration that has exponential complexity.Due to this reason,various MIP methods are proposed for various subclasses of PNs.This work proposes an innovative MIP method to compute an emptiable minimal siphon(EMS)for a subclass of PNs named S^(4)PR.In particular,many particular structural characteristics of EMS in S4 PR are formalized as constraints,which greatly reduces the solution space.Experimental results show that the proposed MIP method has higher computational efficiency.Furthermore,the proposed method allows one to determine the liveness of an ordinary S^(4)PR.