This paper is concerned with the following logarithmic Schrodinger system:{-Δu_(1)+ω_(1)u_(1)=u_(1)u_(1)logu_(1)^(2)+2p/p+q|u_(2)|^(q)|u_(1)|^(p-2)u_(1),-Δu_(2)+ω_(2)u_(2)=u_(2)u_(2)log u_(2)^(2)+2q/p+q|u_(1)|^(p)...This paper is concerned with the following logarithmic Schrodinger system:{-Δu_(1)+ω_(1)u_(1)=u_(1)u_(1)logu_(1)^(2)+2p/p+q|u_(2)|^(q)|u_(1)|^(p-2)u_(1),-Δu_(2)+ω_(2)u_(2)=u_(2)u_(2)log u_(2)^(2)+2q/p+q|u_(1)|^(p)|u_(2)|^(q-2)u_(2),∫_(Ω)|u_(i)|^(2)dx=ρ_(i),i=1,2,(u_(1),u_(2))∈H_(0)^(1)(Ω;R^(2)),where Ω=R^(N)or Ω■R^(N)(N≥3)is a bounded smooth domain,andω_(i)R,μ_(i),ρ_(i)>0 for i=1,2.Moreover,p,q≥1,and 2≤p+q≤2^(*),where 2^(*):=2N/N-2.By using a Gagliardo-Nirenberg inequality and a careful estimation of u log u^(2),firstly,we provide a unified proof of the existence of the normalized ground state solution for all 2≤p+q≤2^(*).Secondly,we consider the stability of normalized ground state solutions.Finally,we analyze the behavior of solutions for the Sobolev-subcritical case and pass to the limit as the exponent p+q approaches 2^(*).Notably,the uncertainty of the sign of u log u^(2)in(0,+∞)is one of the difficulties of this paper,and also one of the motivations we are interested in.In particular,we can establish the existence of positive normalized ground state solutions for the Brézis-Nirenberg type problem with logarithmic perturbations(i.e.,p+q=2^(*)).In addition,our study includes proving the existence of solutions to the logarithmic type Bréis-Nirenberg problem with and without the L^(2)-mass.constraint ∫_(Ω)|u_(i)|^(2)dx=ρ_(i)(i=1,2)by two different methods,respectively.Our results seem to be the first result of the normalized solution of the coupled nonlinear Schrodinger system with logarithmic perturbations.展开更多
In this paper, we study the effect of lower order perturbations in the existence of positive solutions to the fractional Kirchhoff equation with critical growth■ where a, b > 0 are constants, μ > 0 is a parame...In this paper, we study the effect of lower order perturbations in the existence of positive solutions to the fractional Kirchhoff equation with critical growth■ where a, b > 0 are constants, μ > 0 is a parameter,■ , and V : R^3→ R is a continuous potential function. For suitable assumptions on V, we show the existence of a positive ground state solution, by using the methods of the Pohozaev-Nehari manifold, Jeanjean's monotonicity trick and the concentration-compactness principle due to Lions(1984).展开更多
We study the following coupled system of quasilinear equations:Under some assumptions on the nonlinear terms f and g, we establish some results about the existence and regularitl of vector solutions for the p-Laplacia...We study the following coupled system of quasilinear equations:Under some assumptions on the nonlinear terms f and g, we establish some results about the existence and regularitl of vector solutions for the p-Laplacian systems by using variational methods. In particular, we get two pairs of nontrivial solutions. We also study the different asymptotic behavior of solutions as the coupling parameter λ tends to zero.展开更多
In this paper we study the nonhomogeneous semilinear fractional Schr?dinger equation with critical growth{(−∆)su + u = u^2∗s−1 + λ(f(x, u) + h(x)), x ∈ R^N ,u ∈ Hs(R^N ), u(x) > 0, x ∈ RN ,where s∈(0,1),N>4...In this paper we study the nonhomogeneous semilinear fractional Schr?dinger equation with critical growth{(−∆)su + u = u^2∗s−1 + λ(f(x, u) + h(x)), x ∈ R^N ,u ∈ Hs(R^N ), u(x) > 0, x ∈ RN ,where s∈(0,1),N>4 s,andλ>0 is a parameter,2s*=2 N/N-2 s is the fractional critical Sobolev exponent,f and h are some given functions.We show that there exists 0<λ*<+∞such that the problem has exactly two positive solutions ifλ∈(0,λ*),no positive solutions forλ>λ*,a unique solution(λ*,uλ*)ifλ=λ*,which shows that(λ*,uλ*)is a turning point in Hs(RN)for the problem.Our proofs are based on the variational methods and the principle of concentration-compactness.展开更多
文摘This paper is concerned with the following logarithmic Schrodinger system:{-Δu_(1)+ω_(1)u_(1)=u_(1)u_(1)logu_(1)^(2)+2p/p+q|u_(2)|^(q)|u_(1)|^(p-2)u_(1),-Δu_(2)+ω_(2)u_(2)=u_(2)u_(2)log u_(2)^(2)+2q/p+q|u_(1)|^(p)|u_(2)|^(q-2)u_(2),∫_(Ω)|u_(i)|^(2)dx=ρ_(i),i=1,2,(u_(1),u_(2))∈H_(0)^(1)(Ω;R^(2)),where Ω=R^(N)or Ω■R^(N)(N≥3)is a bounded smooth domain,andω_(i)R,μ_(i),ρ_(i)>0 for i=1,2.Moreover,p,q≥1,and 2≤p+q≤2^(*),where 2^(*):=2N/N-2.By using a Gagliardo-Nirenberg inequality and a careful estimation of u log u^(2),firstly,we provide a unified proof of the existence of the normalized ground state solution for all 2≤p+q≤2^(*).Secondly,we consider the stability of normalized ground state solutions.Finally,we analyze the behavior of solutions for the Sobolev-subcritical case and pass to the limit as the exponent p+q approaches 2^(*).Notably,the uncertainty of the sign of u log u^(2)in(0,+∞)is one of the difficulties of this paper,and also one of the motivations we are interested in.In particular,we can establish the existence of positive normalized ground state solutions for the Brézis-Nirenberg type problem with logarithmic perturbations(i.e.,p+q=2^(*)).In addition,our study includes proving the existence of solutions to the logarithmic type Bréis-Nirenberg problem with and without the L^(2)-mass.constraint ∫_(Ω)|u_(i)|^(2)dx=ρ_(i)(i=1,2)by two different methods,respectively.Our results seem to be the first result of the normalized solution of the coupled nonlinear Schrodinger system with logarithmic perturbations.
基金supported by National Natural Science Foundation of China (Grant Nos. 11771468 and 11271386)supported by National Natural Science Foundation of China (Grant Nos. 11771234 and 11371212)
文摘In this paper, we study the effect of lower order perturbations in the existence of positive solutions to the fractional Kirchhoff equation with critical growth■ where a, b > 0 are constants, μ > 0 is a parameter,■ , and V : R^3→ R is a continuous potential function. For suitable assumptions on V, we show the existence of a positive ground state solution, by using the methods of the Pohozaev-Nehari manifold, Jeanjean's monotonicity trick and the concentration-compactness principle due to Lions(1984).
文摘We study the following coupled system of quasilinear equations:Under some assumptions on the nonlinear terms f and g, we establish some results about the existence and regularitl of vector solutions for the p-Laplacian systems by using variational methods. In particular, we get two pairs of nontrivial solutions. We also study the different asymptotic behavior of solutions as the coupling parameter λ tends to zero.
基金supported by National Natural Science Foundation of China(Grant Nos.11771468 and 11971027)supported by National Natural Science Foundation of China(Grant Nos.11771234 and 11926323)。
文摘In this paper we study the nonhomogeneous semilinear fractional Schr?dinger equation with critical growth{(−∆)su + u = u^2∗s−1 + λ(f(x, u) + h(x)), x ∈ R^N ,u ∈ Hs(R^N ), u(x) > 0, x ∈ RN ,where s∈(0,1),N>4 s,andλ>0 is a parameter,2s*=2 N/N-2 s is the fractional critical Sobolev exponent,f and h are some given functions.We show that there exists 0<λ*<+∞such that the problem has exactly two positive solutions ifλ∈(0,λ*),no positive solutions forλ>λ*,a unique solution(λ*,uλ*)ifλ=λ*,which shows that(λ*,uλ*)is a turning point in Hs(RN)for the problem.Our proofs are based on the variational methods and the principle of concentration-compactness.