期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Existence and asymptotics of normalized solutions for the logarithmic Schrödinger system
1
作者 Qian Zhang wenming zou 《Science China Mathematics》 SCIE CSCD 2024年第9期2019-2048,共30页
This paper is concerned with the following logarithmic Schrodinger system:{-Δu_(1)+ω_(1)u_(1)=u_(1)u_(1)logu_(1)^(2)+2p/p+q|u_(2)|^(q)|u_(1)|^(p-2)u_(1),-Δu_(2)+ω_(2)u_(2)=u_(2)u_(2)log u_(2)^(2)+2q/p+q|u_(1)|^(p)... This paper is concerned with the following logarithmic Schrodinger system:{-Δu_(1)+ω_(1)u_(1)=u_(1)u_(1)logu_(1)^(2)+2p/p+q|u_(2)|^(q)|u_(1)|^(p-2)u_(1),-Δu_(2)+ω_(2)u_(2)=u_(2)u_(2)log u_(2)^(2)+2q/p+q|u_(1)|^(p)|u_(2)|^(q-2)u_(2),∫_(Ω)|u_(i)|^(2)dx=ρ_(i),i=1,2,(u_(1),u_(2))∈H_(0)^(1)(Ω;R^(2)),where Ω=R^(N)or Ω■R^(N)(N≥3)is a bounded smooth domain,andω_(i)R,μ_(i),ρ_(i)>0 for i=1,2.Moreover,p,q≥1,and 2≤p+q≤2^(*),where 2^(*):=2N/N-2.By using a Gagliardo-Nirenberg inequality and a careful estimation of u log u^(2),firstly,we provide a unified proof of the existence of the normalized ground state solution for all 2≤p+q≤2^(*).Secondly,we consider the stability of normalized ground state solutions.Finally,we analyze the behavior of solutions for the Sobolev-subcritical case and pass to the limit as the exponent p+q approaches 2^(*).Notably,the uncertainty of the sign of u log u^(2)in(0,+∞)is one of the difficulties of this paper,and also one of the motivations we are interested in.In particular,we can establish the existence of positive normalized ground state solutions for the Brézis-Nirenberg type problem with logarithmic perturbations(i.e.,p+q=2^(*)).In addition,our study includes proving the existence of solutions to the logarithmic type Bréis-Nirenberg problem with and without the L^(2)-mass.constraint ∫_(Ω)|u_(i)|^(2)dx=ρ_(i)(i=1,2)by two different methods,respectively.Our results seem to be the first result of the normalized solution of the coupled nonlinear Schrodinger system with logarithmic perturbations. 展开更多
关键词 logarithmic Schrodinger system Brézis-Nirenberg problem normalized solution existence and stability behavior of solutions
原文传递
Ground state solutions for a class of fractional Kirchhoff equations with critical growth 被引量:2
2
作者 Xiaoming He wenming zou 《Science China Mathematics》 SCIE CSCD 2019年第5期853-890,共38页
In this paper, we study the effect of lower order perturbations in the existence of positive solutions to the fractional Kirchhoff equation with critical growth■ where a, b > 0 are constants, μ > 0 is a parame... In this paper, we study the effect of lower order perturbations in the existence of positive solutions to the fractional Kirchhoff equation with critical growth■ where a, b > 0 are constants, μ > 0 is a parameter,■ , and V : R^3→ R is a continuous potential function. For suitable assumptions on V, we show the existence of a positive ground state solution, by using the methods of the Pohozaev-Nehari manifold, Jeanjean's monotonicity trick and the concentration-compactness principle due to Lions(1984). 展开更多
关键词 FRACTIONAL KIRCHHOFF EQUATIONS ground state solutions Pohozaev-Nehari MANIFOLD critical SOBOLEV EXPONENT
原文传递
非线性Schrödinger方程的正规化解 被引量:1
3
作者 李厚旺 杨佐 邹文明 《中国科学:数学》 CSCD 北大核心 2020年第8期1023-1044,共22页
由于非线性Schrödinger方程在众多物理问题中有着十分重要的应用,其正规化解问题在近年来逐渐引起大批学者的关注:{-Δu+λu=g(u),x∈R^N,u∈H^1(R^N),∫R^N|u|^2=c,其中正规化条件c∈R^+是给定的,而Lagrange乘子λ是未知的.本文... 由于非线性Schrödinger方程在众多物理问题中有着十分重要的应用,其正规化解问题在近年来逐渐引起大批学者的关注:{-Δu+λu=g(u),x∈R^N,u∈H^1(R^N),∫R^N|u|^2=c,其中正规化条件c∈R^+是给定的,而Lagrange乘子λ是未知的.本文首先介绍单个方程在不同条件下正规化解的存在性、多解性及其他一些性质,然后介绍非线性Schrödinger方程组正规化解的相关新结果,并介绍一些与正规化解有关的待解决问题. 展开更多
关键词 Schrödinger方程 正规化解 基态解
原文传递
On the existence and regularity of vector solutions for quasilinear systems with linear coupling
4
作者 Yong Ao Jiaqi Wang wenming zou 《Science China Mathematics》 SCIE CSCD 2019年第1期125-146,共22页
We study the following coupled system of quasilinear equations:Under some assumptions on the nonlinear terms f and g, we establish some results about the existence and regularitl of vector solutions for the p-Laplacia... We study the following coupled system of quasilinear equations:Under some assumptions on the nonlinear terms f and g, we establish some results about the existence and regularitl of vector solutions for the p-Laplacian systems by using variational methods. In particular, we get two pairs of nontrivial solutions. We also study the different asymptotic behavior of solutions as the coupling parameter λ tends to zero. 展开更多
关键词 P-LAPLACIAN system least energy SOLUTIONS Moser ITERATION VARIATIONAL methods
原文传递
Bifurcation and multiplicity of positive solutions for nonhomogeneous fractional Schrödinger equations with critical growth
5
作者 Xiaoming He wenming zou 《Science China Mathematics》 SCIE CSCD 2020年第8期1571-1612,共42页
In this paper we study the nonhomogeneous semilinear fractional Schr?dinger equation with critical growth{(−∆)su + u = u^2∗s−1 + λ(f(x, u) + h(x)), x ∈ R^N ,u ∈ Hs(R^N ), u(x) > 0, x ∈ RN ,where s∈(0,1),N>4... In this paper we study the nonhomogeneous semilinear fractional Schr?dinger equation with critical growth{(−∆)su + u = u^2∗s−1 + λ(f(x, u) + h(x)), x ∈ R^N ,u ∈ Hs(R^N ), u(x) > 0, x ∈ RN ,where s∈(0,1),N>4 s,andλ>0 is a parameter,2s*=2 N/N-2 s is the fractional critical Sobolev exponent,f and h are some given functions.We show that there exists 0<λ*<+∞such that the problem has exactly two positive solutions ifλ∈(0,λ*),no positive solutions forλ>λ*,a unique solution(λ*,uλ*)ifλ=λ*,which shows that(λ*,uλ*)is a turning point in Hs(RN)for the problem.Our proofs are based on the variational methods and the principle of concentration-compactness. 展开更多
关键词 fractional Schrödinger equation bifurcation and multiplicity concentration-compactness principle critical Sobolev exponent
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部