期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Extreme high reversible capacity with over 8.0 wt% and excellent hydrogen storage properties of MgH2 combined with LiBH4 and Li3AlH6 被引量:2
1
作者 wenping lin Xuezhang Xiao +6 位作者 Xuancheng Wang Jie-Wei Wong Zhendong Yao Man Chen Jiaguang Zheng Zhencan Hu Lixin Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期296-306,共11页
Magnesium hydride has attracted great attention because of its high theoretical capacity and outstanding reversibility, nevertheless, its practical applications have been restricted by the disadvantages of the sluggis... Magnesium hydride has attracted great attention because of its high theoretical capacity and outstanding reversibility, nevertheless, its practical applications have been restricted by the disadvantages of the sluggish kinetics and high thermodynamic stability. In this work, an unexpected high reversible hydrogen capacity over 8.0 wt% has been achieved from MgH2 metal hydride composited with small amounts of LiBH4 and Li3AlH6 complex hydrides, which begins to release hydrogen at 276 ℃ and then completely dehydrogenates at 360 ℃. The dehydrogenated MgH2+LiBH4/Li3AlH6 composite can fully reabsorb hydrogen below 300 ℃ with an excellent cycling stability. The composite exhibits a significant reduction of dehydrogenation activation energy from 279.7 kJ/mol(primitive MgH2) to 139.3 kJ/mol(MgH2+LiBH4/Li3AlH6),as well as a remarkable reduction of dehydrogenation enthalpy change from 75.1 k J/mol H2(primitive MgH2) to 62.8 kJ/mol H2(MgH2+LiBH4/Li3AlH6). The additives of LiBH4 and Li3AlH6 not only enhance the cycling hydrogen capacity, but also simultaneously improve the reversible de/rehydrogenation kinetics, as well as the dehydrogenation thermodynamics. This notable improvement on the hydrogen absorption/desorption behaviors of the MgH2+LiBH4/Li3AlH6 composite could be attributed to the dehydrogenated products including Li3Mg7, Mg17Al12 and MgAlB4, which play a key role on reducing the dehydrogenation activation energy and increasing diffusion rate of hydrogen. Meanwhile, the LiBH4 and Li3AlH6 effectively destabilize MgH2 with a remarkable reduction on dehydrogenation enthalpy change in terms of thermodynamics. In particular, the Li3Mg7, Mg17Al12 and MgAlB4 phases can reversibly transform into MgH2, Li3AlH6 and LiBH4 after rehydrogenation, which contribute to maintain a high cycling capacity.This constructing strategy can further promote the development of high reversible capacity Mg-based materials with suitable de/rehydrogenation properties. 展开更多
关键词 Magnesium hydride Complex hydride Hydrogen storage High reversible capacity Synergistic effect
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部